Characterization of Low-Level Jet Events at different Offshore Locations

B. Köhlken, J. Paulsen, A. Rott, J. Schneemann, G. Steinfeld, M. Kühn Carl von Ossietzky Universität Oldenburg

ForWind - Center for Wind Energy Research

15.01.2025 EERA DeepWind Conference, Trondheim

Content

- 1. Introduction and motivation
- 2. Measurement and detection of Low-Level Jets (LLJ)
- 3. Characterization of LLJs
- 4. Parameterization of LLJs by analytical profiles
- 5. Conclusion and outlook

1. Introduction

- LLJs are local maxima in a vertical wind profile at low altitudes
- Appear at height of swept rotor area of wind turbines
- Observed quite frequently in offshore regions

Carl von Ossietzky

Motivation

- May influence power production and dynamic loads
- Will become more important with larger turbines
- Many definitions available
- Analytical functions to improve description of LLJ properties

2. Measurement and detection of LLJ

Nordergründe (NG): - Plan-position indicator (PPI)

DolWin Gamma (DWG): - Range-height indicator (RHI) - Doppler Beam Swing (DBS)

Carl von Ossietzky Universität

Profile measurements by scanning Lidars

Location	Measurement technique	Max. height	Vertical resolution	Temporal resolution	Duration
NG	Multi-Elevation horizontal PPI	350 m	10 m	30 min	15 month
DWG	RHI	2290 m	5 m	30 min	13 month
DWG	DBS	1220 m	6 m	30 min	10 month

15 consecutive PPI scans with increasing elevation

Carl von Ossietzky

Data preprocessing

- Horizontal wind speed via VAD algorithm
- For PPI and RHI: Averaging over heights and 30 min temporal averaging
- Filtering for wind direction
- Rolling average to smooth profile
- Filtering of outliers
- 5 erroneous values in a row \rightarrow profile not considered

Carl von Ossietzky Jniversität

Oldenbura

LLJ detection criteria

Carl von Ossietzky

LLJ detection: criteria and scanning techniques

Measurement campaign	Number of LLJ instances	Percentage / %
DWG DBS	2953	23.8
DWG RHI	2417	17.0

3. Characterization of LLJ

DWG DBS

- Core height usually < 500 m
- "Full width at half fall-off" (FWHF) mostly < 300 m
- Core speed around 10ms^{-1}
- Measurements shifted up by 50 m because of measurement platform

Carl von Ossietzky Universität

4. Parameterization of LLJ by analytical profiles

- Generalization by analytical profile
- Least-squares fitting
- Fit applied between local minima above and below core

Carl von Ossietzky Universität

Quality of core region fit

- Number of fits per stability regime with coefficient of determination $R^2 \ge 0.8$
- Weibull reaches threshold for ~70-80% of profiles

Carl von Ossietzky

5. Conclusion

Characterization

- Comparison difficult due to different locations, measurement techniques and Lidar systems
- LLJ core often at height of rotor swept area (~23% in DWG DBS)

Parametrization

- Weibull and Skewed Normal functions fit the region around core quite well
- cos²- function only works for very symmetrical LLJ

iversität

Oldenbura

5. Outlook

- Test parameterization with Laguerre polynomials
- Analyze turbine response on LLJ
 - Aeroelastic simulations of power and loads with parameterized LLJ profiles
 - Power data (SCADA) at measured LLJ situations

Acknowledgements

German Federal Ministry for Economic Affairs and Climate Action

- Project X-Wakes (FKZ 03EE3008D) and
- Project WindRamp (FKZ 03EE3027A) and
- Project C²-Wakes (FKZ 03EE3087B).
- Support of measurements and data:
 OWP Nordergründe GmbH & Co. KG
 - TenneT TSO GmbH

Supported by:

Carl von Ossietzky Universität

Oldenburg

on the basis of a decision by the German Bundestag

- Norbert Warncke (SGRE) for his valuable input and discussions
- Faculty V of Universität Oldenburg for mobility funding

Any questions?

Contact: bjarne.koehlken@uni-oldenburg.de

© ForWind

References

- Kalverla, P. C., Duncan Jr., J. B., Steeneveld, G.-J., & Holtslag, A. A. M. (2019). Low-level jets over the North Sea based on ERA5 and observations: Together they do better. Wind Energy Science, 4 (2), 193–209. https://doi.org/10.5194/wes-4-193-2019
- Rubio, H., Kühn, M., & Gottschall, J. (2022). Evaluation of low-level jets in the Southern Baltic Sea: A Seite 26 29.08.2024 comparison between ship-based lidar observational data and numerical models (Preprint). Wind and the atmosphere/Atmospheric physics. https://doi. org/10.5194/wes-2022-40
- Wagner, D., Steinfeld, G., Witha, B., Wurps, H., & Reuder, J. (2019). Low Level Jets over the Southern North Sea. Meteorologische Zeitschrift, 28 (5), 389–415. https://doi.org/10.1127/metz/2019/0948
- Hallgren, C., Aird, J., Ivanell, S., Kornich, H., Barthelmie, R., Pryor, S., & Sahlee, E. (2023). Brief communication: On the definition of the low-level jet. Wind Energy Science, 8 (11), 1651–1658. https://doi.org/10.5194/wes-8-1651-2023

Fitting functions

- cos^2 -function: $u = u_{min} + a * cos(b * h + c)^2$
- Weibull distribution: $u = u_{\min} + a * \left(\frac{k}{\lambda}\right) \left(\frac{h}{\lambda}\right)^{k-1} * \exp\left(-\left(\frac{x^k}{\lambda}\right)\right)$
- Skewed normal distribution:

$$u = u_{\min} + a * \frac{2}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \int_{-\infty}^{\lambda \frac{(h-\mu)}{\sigma}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dh$$

Accounting for diffence between measurement campaigns

Carl von Ossietzky

Wind veer

© ForWind

Stability regimes

Stability Class	Range of L_*
Very Stable (VS)	$0 \le L_* < 200$
Stable (S)	$200 \le L_* < 1000$
Near neutral (NN)	$1000 \le L_* $
Unstable (U)	$-1000 < L_* \le -200$
Very unstable (VU)	$-200 < L_* \le 0$

Table 2: Obhukov Length L_* and the corresponding stability regime

Table 5: Probability at which the stability regimes can be observed for DWG and NG

	\mathbf{VU}	\mathbf{U}	NNU	NNS	\mathbf{S}	\mathbf{VS}
DWG	13%	37%	5%	4%	14%	25%
\mathbf{NG}	12%	53%	2%	2%	9%	20%

Quality of Laguerre Fits

