

Cyber-physical testing of floating wind turbine farm with shared mooring

Vishnu R N Rajasree PhD student IMT, NTNU

Yngve Lilleeng Jenssen
 Researcher
 SINTEF Ocean

Erin Bachynski-Polić Professor IMT, NTNU

Thomas Sauder Professor / Senior Researcher IMT, NTNU / SINTEF Ocean

Background – the CYBERLAB project

- 4 years: 2022-2025
- Objective: understand the dynamic behaviour of floating wind parks with shared mooring
- Challenges:
 - Understanding the physics
 - Develop good analysis methods and numerical tools
 - Upgrade our experimental methods ← subject of this talk

CYBERLAB Model test setup

- KPN CYBERLAB Project
- Model: INO WINDMOOR 12 MW
- Cyber physical testing and its control system
- Performance of the setup

- Scale: 1:40
- Draft T = 15.5 [m]
- Mass = 14104 t
- Column diameter = 15 [m]
- Water depth: 200 [m]

- Instrumentation
- 6DOF Motion Capture (MoCap)
- 6x Mooring line forces
 transducers
- 1x Gyro (3 axis)
 - Tower
- 2x Accelerometer (3 axis)
 - Tower
 - Floater

SINTEF

Cyber-Physical test setup

- 6x actuators placed around the basin
- Active horizontal mooring
 - Mooring forces are defined using a control system. Surge, Sway and Yaw (3DOF)
- Two main configurations:
 - Virtual mooring system with control of stiffness, damping and equilibrium position
 - External force input from a simulation
- Setup is configured to allow headings from 0-90 degrees

Controller Allocation

- Observer
 - Estimates position and velocity of origin
- Mooring "simulation"
 - Simulates forces based on position and velocity input
- Numerical model
 - FMU from SIMO (floating wind park)
- Allocation
 - $\tau_{cmd} \rightarrow T_{1-6}$
- Winch force controller (Controller)

Numerical

substructure

System performance

• Chirp in all DOF (0.2 \rightarrow 4 [Hz])

.......

z

Z 0

900

1100

1100

1000

• Surge, sway and yaw

1200

1200

Bode diagram \rightarrow <u>Approximately 40 ms delay</u>

FX MOORING

1300

1300

Time [s] MZ_MOORING

Time [s] FY_MOORING 1400

1400

1500

1500

Heading change, $90^{\circ} \rightarrow 10^{\circ}$

Shared mooring farm tests

- Shared mooring
- Substructures
- Tested farm configurations
- Pullout/Decay Tests
- Line breakage tests
- Conclusions

Shared mooring

Model test?

Decoupled platforms

Substructures

NTNU SINTEF

Pullout/Decay tests

Eigenvalue analysis

Mode : 1 | Period : 101.06 s

Calculate the 'external' force which will produce the desired mode shape

Time : 6400.92 s

Good agreement between numerical simulations and results from cyber-physical tests.

INTNU **SINTEF**

7400

Line breakage tests Hs 3.75 m Tp 7 s

Line breakage tests Hs 3.75 m Tp 7 s

Conclusions

Test	Conclusion
Laboratory methods	 Active mooring system → applied to test shared mooring lattice
Pullout/Decay tests	 Excited the exact modes of the lattice by applying respective modal loads
	 Good agreement seen between eigenvalue analysis, numerical decay and cyber- physical pullout and decay tests
Irregular wave tests	 Good agreement is seen in the wave frequency region between the physical turbine and prescribed motion simulations.
	 Discrepancies are seen in the low frequency region.
Line breakage tests	 Good agreement is seen between the motions of physical turbine and prescribed motion simulations in terms of the extreme transient response and damping.

Thank you

This research has been funded by the Research Council of Norway through project 326654 CYBERLAB KPN, a collaboration between SINTEF Ocean, NTNU, University of Aarhus, Equinor, Aker Offshore Wind, APL Norway, Sevan Deepwater Technology and Delmar Systems.