Innovation Fund Denmark

FloatLab: experimental testing of +20MW scaled floating wind turbine models F. Pierella, R. Mikkelsen, K. Lønbæk, K. Enevoldsen, G.R. Thorsen, H.Bredmose

SIEMENS Gamesa RENEWABLE ENERG

> **Stiesdal** Offshore

Orsted

1 of 29

A more realistic view of the experimental setup

The FloatLab Project

- Danish Innovation Fund
 - 2024-2028
 - Budget 22.3 MDKK (3M€)
- Twinned physical and Digital lab for +20MW floating wind turbine design

Innovation Fund Denmark

Innovation Fund Denmark

Design of the wind generator

- Specifications
 - Mass≈5t , P≈50 kW @ 5 m/s
 - Max speed 5 m/s
 - Frequency response up to ca.
 0.5 Hz
- Complex wind features
 - Shear
 - Turbulent scales of varying size
 - Wind coherence

Description of the blower unit

Innovation Fund Denmark

Introduction Wind Generator Rotor Design Conclusion

Calibration of the first unit

Calibration of the first unit: selection of number of screens

Calibration of the first unit: selection of number of screens

Next task: dynamic calibration

Innovation Fund Denmark

Part 2: the rotor design

The IEA 22MW reference wind turbine

- D = 284 m
- Design tip speed ratio 9.153
- RNA mass ca. 1215 t
- Rated wind speed 11 m/s
- Rated thrust ca. 2.793 MN
- Airfoil FFA-W3 series
- Rotor Re number ca. 10M

HAWC2 visualization of the IEA 22MW rotor.

Froude vs. Reynolds scaling

- D = 284 m, three bladed
- Design tip speed ratio 9.153
- RNA mass ca. 1215 t
- Rated wind speed 11 m/s
- Rated thrust ca. 2.793 MN
- Airfoil FFA-W3 series
- Rotor Re number ca. 10M

Choosing Froude scaling over Reynolds...

- D = 284 m, three bladed
- Design tip speed ratio 9.153
- RNA mass ca. 1215 t
- Rated wind speed 11 m/s
- Rated thrust ca. 2.793 MN
- Airfoil FFA-W3 series
- Rotor Re number ca. 10M

- D = 4.06 m, three bladed
- Design tip speed ratio 9.153
- RNA mass ca. 3.46 kg
- Rated wind speed 1.3 m/sRated thrust ca. 7.5 N
- Airfoil low-speed SD7003 (8.5% rt)
- Rotor Re number ca. 20k

HUGE IMPACT ON AIRFOIL PERFORMANCE

Lift coefficient for FFA-W2-221 vs. SD7003

Matching the mean aerodynamic thrust

Innovation Fund Denmark

Matching the mean thrust

Key assumption: frozen wake

 $\tilde{V}_{rel}^2\cos(\phi)(C_l+C_d\tan\phi)$

Introduction Wind Generator Rotor Design Conclusion

Let's analyze the airfoil polars for SD7003 8.5%

Normal load C_{LT} is nicely matched, penalty on tangential load C_{LP}

Conclusions and next steps

- FloatLab is building an experimental facility for testing +20MW scaled wind turbine
 - 5 MSc projects starting soon (manufacture of blades + nacelle, controller design, etc.)
 - Experimental campaign in Apr-May '25
- Wind generator under construction
 - One unit tested promising results
 - 25 units ready in March
- Wind turbine design procedure
 - Accurate match of thrust curve and good match of aerodynamic damping
 - Rotor design ready blade to be manufactured