

## Planning for re-tensioning? A probabilistic take on post-installation fibre rope elongation

Lars Frøyd | 4Subsea EERA DeepWind 2025 | Trondheim 2025-01-16

### Why focus on rope elongation?

And why consider this right now?

- Industry (in general) don't <u>really</u> understand fibre ropes
- By Industry I mean:
  - Developers, Operators, EPC contractors,
  - T&I contractors, Insurance, Certification,
  - Design engineers and consultants,
  - Rope manufacturers
- There are of course exceptions...
- Industry really <u>should</u> understand fibre ropes quite well
- Fibre rope behavior and characteristics are imperative to mooring system integrity and redundancy, and thus short- and long-term operating cost for floating wind.
- Personally, I also don't <u>really</u> understand fibre ropes But as design engineer I have been, and will be, asked for advice on this topic, and design and analyze fibre rope mooring systems for upcoming floating wind projects.
- The time to improve our understanding (industry and myself) is **right now**, to be well prepared for the next generation of floating wind projects (Utsira Nord, GoliatVIND, ++)

#### Topic of this work:

- 1. How much will polyester mooring ropes elongate during the 1<sup>st</sup> storm season?
- 2. How are loads and responses affected?
- 3. What is the effect of re-tensioning?

High-level summary

#### Polyester rope behaviour is:

- Highly non-linear
- Time and history dependent



Focus of this work is irreversible elongation from installation through 1<sup>st</sup> storm season

Irreversible elongation largely caused by **mean tension** in the rope

Mean tension dominated by wind (turbine thrust) and current

Mean loads approximated by **quasi-static** analysis

### What are the effects of rope elongation?

And what to do about it

- Rope elongation leads to:
  - Reduced pre-tension
  - Change of natural periods 
     Impact controller behavior, power production, fatigue
  - Reduced yaw stiffness
  - Increased floater offset
- If asymmetric, also:
  - Nominal position offset
  - Uneven loading between mooring lines --> Impact mooring fatigue
- Possible mitigations, which all come at additional cost:
  - Using different material than fibre rope ---> Chain more expensive, production capacity limited

  - Re-tensioning during lifetime  $\longrightarrow$  Expensive, corrective action not possible during winter season
  - In-line buoyancy to ensure rope seabed clearance ---- Cost and maturity concerns

The **better option** is to design mooring systems that can tolerate the elongation, but this requires a good understanding of fibre rope to avoid excessive conservatism (or non-conservatism!) in design.

#### Impact power cable design loads

Risk of fibre rope contact with seabed

### Parametrized stiffness (slope):

 $k_{OC}(T) = 16.5 - 0.70T + 0.0127T^2$  $k_{OWC}(T) = 10.5 - 0.46T + 0.0115T^2$  $k_{WC}(T) = 7 + 0.40T$ 



Restricted © 4Subsea

Example installation and loading cycle



#### Example 1 - No pre-stretching

1. Rope tensioned to target post-installation tension of 15% MBL.

Example installation and loading cycle



#### Example 1 - No pre-stretching

- Rope tensioned to target post-installation tension of 15% MBL.
- 2. When installing to target tension with a chain tensioner the overlength  $\epsilon_0$  from rope stretching is effectively cancelled (the same length of chain is removed)

Example installation and loading cycle



#### Example 1 - No pre-stretching

- Rope tensioned to target post-installation tension of 15% MBL.
- 2. When installing to target tension with a chain tensioner the overlength  $\epsilon_0$  from rope stretching is effectively cancelled (the same length of chain is removed)
- 3. Later during service life the rope experiences higher mean tension levels. Maximum 25% MBL
- 4. This leads to a permanent elongation  $\epsilon_1$ . The rope is now on a new working curve and has reduced pre-tension

Example installation and loading cycle



#### Example 1 - No pre-stretching

- Rope tensioned to target post-installation tension of 15% MBL.
- 2. When installing to target tension with a chain tensioner the overlength  $\epsilon_0$  from rope stretching is effectively cancelled (the same length of chain is removed)
- 3. Later during service life the rope experiences higher mean tension levels. Maximum 25% MBL
- 4. This leads to a permanent elongation  $\epsilon_1$ . The rope is now on a new working curve and has reduced pre-tension

#### Example 2 - Re-tensioning

- 5. When re-tensioning to (to 15% MBL) with a chain tensioner the overlength  $\epsilon_1$  from in-service rope stretching is effectively cancelled (the same length of chain is removed)
- 6. After this, no further elongation unless tension <u>above 25% MBL is experienced</u>

Example installation and loading cycle



#### Example 3 - Pre-stretching

1. Rope pre-stretched to 25% MBL before reducing to target post-installation tension of 15% MBL.

Example installation and loading cycle



#### Example 3 - Pre-stretching

- 1. Rope pre-stretched to 25% MBL before reducing to target post-installation tension of 15% MBL.
- 2. When installing to target tension with a chain tensioner the overlength  $\varepsilon_0$  from rope stretching is effectively cancelled (the same length of chain is removed)
- 3. No further elongation occurs unless tension later increases <u>above 25% MBL</u>

## Rope elongation case study

#### Floating wind turbine model:

- 15 MW 3-column semisubmersible floater, offset turbine
- 15 MW IEA turbine (mean rotor load according to thrust curve)

#### Mooring system:

- 6-line (3x2 clustered) mooring configuration.
- Chain/polyester semi-taut mooring
- Post-installation pre-tension 15% of rope MBL

#### Environment and metocean:

- North Sea wind, wave & current conditions
- Utsira Nord selected for case study at water depth 270m

#### Polyester rope modelling:

- Generic SyRope model for polyester mooring ropes (as shown)
- 3 levels of installation pre-stretching (15%, 20%, 25% MBL)

#### Simulation:

- Stepwise sequential static analysis throughout the 1<sup>st</sup> winter season after installation, tracking the state (tension history and elongation) of each mooring rope
- Repeat for several years to get statistics
- Analyses performed in OrcaFlex 11.5





### Metocean conditions

At Utsira Nord (Norwegian North Sea)

- Analysis based on:
  - 48 years wind/wave hindcast (NORA3)
  - 8 years current hindcast (NorKyst)
- Every 1-hour environmental state considered in each year from Oct. 1<sup>st</sup> to April 1<sup>st</sup> the following year
  - 48 years => 47 full winter seasons
  - Years without current randomly assigned a current history (with minor random/stochastic adjustments) from the 7 full current histories
- The NORA3 hindcast includes:
  - Wind speed and direction
  - Wind-sea  $H_{\scriptscriptstyle S},\,T_{\scriptscriptstyle P}$  and direction
  - Swell  $H_S$ ,  $T_P$  and direction
- The NorKyst hindcast includes:
   Current speed and direction through water depth



### Simulation – Part I

Sequential static simulation

### How much will polyester mooring ropes elongate during the 1<sup>st</sup> storm season?



15



### Simulation results

Results of elongation after 1<sup>st</sup> winter season



### Simulation results



### Simulation – Part II

Insert 50-year ULS sea state for dynamic analysis

19



### Simulation results - Part II

Elongation history dependent ULS mooring utilization

- Mooring loads sensitive to system pre-tension (which depends on pre-stretching)
- Inter-year variability is minimal (less than seed to seed variation in ULS)



### Simulation – Part III





4subsea

### Summary and conclusions

- 1. How much will polyester mooring ropes elongate during the 1<sup>st</sup> winter season?
- Rope elongation varies significantly from year to year, including which cluster elongates most.
- Rope elongation depends significantly on the amount of pre-stretching during installation
- Rope elongation between lines in a cluster can vary significantly.
   (A common assumption is that initial fibre rope length variations/tolerances will equalize due to the shorter rope elongating more, but this cannot be universally true based on the observed)

#### 2. How are loads and responses affected?

- Although rope elongation varies significantly from year to year, the resulting variation in system pre-tension is small. Mooring ULS loads depend mostly on system pre-tension.
- Most of the elongation develops early in the lifetime such that at the time when the yearly maxima occurs the elongation is largely stabilized.
- Thus, mooring ULS loads vary little between years (less than variations between random seeds)
- As loads depend on pre-tension and pretension reduces over time there is a potential cost saving of considering (in a probabilistic manner) the time until the likely earliest occurrence of the ULS load. (Polyester ropes are ULS governed, as opposed to chains that are FLS governed!)

#### 3. What is the effect of re-tensioning?

- Re-tensioning in a single cluster can cause significant nominal floater offsets with impact on cable system design loads and require significant chain overlength. Can be mitigated by pre-stretching

### Post-presentation note

Non-linear vs. linear working curve models



I received some comments after the presentation that the levels of permanent elongation shown were smaller than expected.

This can be partly explained by the use of a non-linear working curve model. ABS [2] and BV [1] for example both describe a linear quasi-satatic stiffness. A linear stiffness curve tangential to the working curve at the intercept of the original working curve would result in a larger permanent elongation as shown to the riight. However, the system characteristics/response of the system with linear static stiffness and increased permanent elongation  $\Delta\epsilon$  would be comparable to the non-linear base case. This difference/effect was not sufficiently explained in the presentation.

Other reasons for "smaller than expected" permanent elongation is likely that this work does not consider long-term creep directly, although some creep is built into the original working curve. Also, this work does not include elongation following a "design load condition", which would certainly exceed the elongation from the probabilistic load combination considered here.

Lars Frøyd 20/01/2025

Bureau Veritas BV-NI-432, Certification of Fibre Ropes for Deepwater Offshore Services, 2018-12
 American Bureau of Shipping (ABS), Requirements for the application of fiber rope for offshore mooring, 2024

