

16.01.2025 / DeepWind

Large scale simulation models of combined windelectrolyser plant for virtual testing based on FMUs

Marcus Wiens

Modelling of Hybrid Power Plants

Hybrid power plants are attractive for operators

- saving costs and increasing flexibility of operation
- decoupling from regular grid operation

New challenges arise:

- Different domains are coupled
- Degrees of freedom for controlling the plant is high
- Regulatory is in development
- Large scale testing is a huge challenge

Coupled simulation models built on existing domain models and testing methods are needed

Desing hybrid power plant and grid integration process

Example for a large-scale system development

V-Model design approach

each design specification level has a corresponding testing level

Requirements Analysis:

Define acceptance tests to ensure final product meets requirements

System integration & system validation

- Validation must be planned during system design
- Validation of GW-scale will be done model based!
- Utilization of models in different levels of detail
- Models must cover many different domains

Overview of Fraunhofer IWES testing infrastructure

Grid integration of wind turbines

Nacelle test bench

- 10/15MW Nacelle test bench
- 44 MVA Grid emulator
- Flexible utilization options
- Measurement of the electrical characteristics for type testing in the lab

Sub-system test bench

- 9/13 MW Generator-Inverter-System test bench for grid integration testing
- 44 MVA Grid emulator
- Validated Hardware-in-theloop (HIL) system operation
- Measurement of the electrical characteristics for type testing in the lab

Mobile Grid

- 28 MVA / 80 MVA Grid emulator
- 66 kV for offshore application
- Mobile due to containerized setup - 19 container
- Enable grid Integration testing for upcoming offshore wind turbines including higher functionality

Multiple Available Test Pads - "Plug ,n' Play"

- Each pad has power, data, H2, H2O & N2 at site
- Multiple pads can be combined
- Up to 10 MW

Fraunhofer IWES contribution to manage a large-scale system development

Q-Sim: Simulation Platform

The Platform is based on Co-Simulation

- Q-Sim is a dynamic simulation platform
- Implementation in Python
- Simulations are assembled by combining components into the larger system model
- Large simulations with many components are parallelized
- Abstraction of model interfaces for simplifications
 - enables parallel development of components
 - ensure compatibility between single simulation models

Scenario based simulations in the time domain

Scenarios can be run in parallel

Requirements

- All models must be implemented as FMU
- Interfaces between components are designed by a top-down approach

Example System:

Library of IWES component models

IWES component models cover the whole spectrum of wind energy conversion

Every models implements a predefined Interface

Interfaces are based on bond graph theory

Full System Definition

Dynamic simulation of a wind farm

- Hybrid wind farm control commands power setpoints of turbines and electrolyzer
- All simulation components are FMUs
- Interfaces for aerodynamic, electrical, thermic and controller domain

Hybrid Wind Farm:

- 12 offshore wind turbines in a grid layout
 - IEA 15 MW \rightarrow 180 MW total
 - IWES Wind Turbine Research Controller
- 12 electrolyser units
 - 5 MW per unit \rightarrow 60 MW total
- 15 cable models to transmit active and reactive power
- Hybrid wind farm controller
- Public grid model with variable voltage

Development of Grid Integration of Hybrid Parks

Wind Farm Power Plant

Virtual Plant Testing

Dynamic wind inflow

- Use an artificial wind field to show influence of wakes
- Include wake meandering effects
- Utilizing Foxes by Fraunhofer IWES for dynamic wakes

1000

0

-1000

-2000

-3000

-4000

-5000

distance north/m

- Each turbine sees a difference wind profile
- Power is generated according to the wind farm controller

Detailed Model of the wind turbine

Single Unit Level

Wind turbine characteristics

- 15 MW IEA wind turbine
 - Implement different model fidelities
 - Wind turbine is an aero-elastic model
 - Simplified model
- Wind turbine is coupled to the grid by the generator system
 - The state of the grid can influence the turbine performance
- Wind turbine must be yaw to align with the wind direction
- Wakes and yawing cause a dip in available power

Slide 11

See all details of the electrolyser models

Single Unit Level

Dynamic performance of electrolyzer

- Every electrolyser is calculated individually
- Each electrolyser receives a power setpoint

Single unit level enables decoupled development of components

- Components can be developed individually
- Predefined interfaces ensure that models can be connected later
- Level of detail can be chosen for each model

400

Base Component Development

Component Level

Individual components layer: Test all components individual before building the larger system

- The interfaces of components are designed
- Utilization of best suited modelling tool for each model
- Can be implemented fully virtually

Testing is possible and required for development

- Development of single units
- After single unit validation, the larger simulation model can be built

Summary

Contact

Marcus Wiens Advanced Control Systems Fraunhofer Institute for Wind Energy Systems IWES Am Seedeich 45 27572 Bremerhaven Germany

Phone +49 471 14290-461 marcus.wiens@iwes.fraunhofer.de

Fraunhofer

IWES

Fraunhofer