Session 4C (Digitalisation and AI to optimise Operation and maintenance)

Investigation of AI-Based Model Response for Early Anomaly Detection in Scale Wind Experimental Campaigns

Presented by: Rudy Alkarem EERA DeepWind Trondheim, Norway

Layout

Introduction

- Lab scale testing:
 - need: validation of new technologies (e.g., testing new control)
 - challenges:
 - delicate equipment: (e.g., performance-match thin airfoil blade sections)
 - no system redundancies due to tight mass constraints (especially for floating)
- Detecting early signs of anomalies can:
 - inform operators of their existance
 - automatically abort the test

Introduction

• Fault events:

- operator error
- erroneous control command
- instrumentation malfunction
- Consequences of fault events:
 - costly damages
 - violation of laboraty safety standards
 - cause project delays

Consequences at full scale?

LOCAL NEWS

Coast Guard warns about debris from damaged Vineyard Wind turbine off Nantucket

Multi-Fi DT incorporating wave prediciton

Experimental Setup

Experimental Setup

To characterize the rotor, experiments were performed at different wind spped/RPM pairs, cycling through blade pitch setpoints.

monitoring system:

Data acquisition system (DAQ) using National Instruments cRIO

Failure incident at a high wind speed run

Principal components selection

Principal components: 1PC: retaining the first PC MPC: retains M group of PCs that cumulatively explain 90% of the total variance

Anomaly threshold

(c) Error derivative histogram in 1PC model.

(d) Error derivative histogram in MPC model.

T/F: Anomaly or not											
	True negative (undetected true anomaly)	True positive (detected anomaly is true)									
(False negative undetected false anomaly)	False positive (detected anomaly is false))								

Performance Metrics

ratio of true positives to all detected: Precision (P)

$$P = \frac{T^+}{T^+ + F^+}$$

ratio of true positives to all true anomalies: Recall (R)

$$R = \frac{T^{+}}{T^{+} + T^{-}}$$
$$< FI = 2 \times \frac{P \times R}{P + R} < 1$$

Results

Pre-strike anomaly detection

Variation of anomaly detection criteria combination to the accuracy of the models

		\mathbf{T}^+	\mathbf{F}^+	T ⁻	Precision	Recall	FI Score				\mathbf{T}^+	\mathbf{F}^+	T ⁻	Precision	Recall	FI Score	
	ΔΕ	AR	33	32	4	0.452	0.892	0.600	MPC	$\Delta \mathrm{E}$	AR	25	10	12	0.510	0.676	0.581
		HR	0	8	0						HR	0	14	0			
1DC	ΔE & E	AR	32	15	5	0.681	0.865	0.762		ΔE & E	AR	19	0	18	1 000	0 514	0.679
11 U		HR	0	0	0						HR	0	0	0	1.000	0.014	0.010
	$\Delta \mathbf{E} \mid \mathbf{E}$	AR	37	149	0	0.188	1.000	0.316		$\Delta \mathbf{E} \mid \mathbf{E}$	AR	35	10	2	0 574	0.946	0 714
		HR	0	11	0						HR	0	0 16	0	0.014	0.540	0.114

Sensitivity study of sampling frequency to anomaly detection delay, and accuracy

(a) detection delay

(b) FI score

