FLOATING OFFSHORE WIND CENTRE OF EXCELLENCE

Technology Review of Tension-Leg Platform Floating Wind Turbines

Dr Daniel Milano 16.01.2025

- Introduction & objectives
- Project outline
- TLP viability matrix
- Techno-economic analysis
- Findings & Knowledge gaps

INTRODUCTION & OBJECTIVES

Objectives and Focus

- Explore the offshore wind industry's concerns about TLP Floating Offshore Wind Turbines
- Examine existing literature, designs, and insights from industry partners and stakeholders
- Identify key design drivers, challenges, and favorable conditions for TLP-WTs
- Highlight technologies and developments critical for TLP integration

Key Highlights

- Design Requirements
 - Review existing research and standards
 - Outline stability requirements for towing configurations
- Lifecycle Analysis
 - Insights on consenting, insurance, installation, and decommissioning
 - Opportunities for local supply chains in TLP manufacturing
 - Mooring and Anchoring Solutions
 - Evaluation of synthetic cables, inclined tendons, and load reduction devices
 - Representative Bills of Materials for TLP systems
- Innovative Solutions
 - Cutting-edge approaches to substructure, mooring, and anchoring.

- Literature and Technology Review, Mooring Requirements, Challenges and Opportunities
 - Design requirements for TLPs at high level
 - Focus on sensitivity to environmental conditions
 - Installation and major component exchange considerations
- Review of TLP Mooring State of the Art and Potential Innovations
 - Novel anchor solutions, changes to installation processes, synthetic cables, inclined tendons
 - Representative and novel Bills of Materials for TLP M&A systems
 - Hardware and installation cost assessment of a TLP mooring system will be carried out

- Literature and Technology Review, Mooring Requirements, Challenges and Opportunities
 - Design requirements for TLPs at high level
 - Focus on sensitivity to environmental conditions
 - Installation and major component exchange considerations
- Review of TLP Mooring State of the Art and Potential Innovations
 - Novel anchor solutions, changes to installation processes, synthetic cables, inclined tendons
 - Representative and novel Bills of Materials for TLP M&A systems
 - Hardware and installation cost assessment of a TLP mooring system will be carried out

• Numerical Modelling and Comparative Analysis

- Evaluated TLP performance under different load cases and site conditions.
- Two OEMs with 15+ years of TLP design experience contributed 14 scenario-specific designs, including substructure, tower, and tendon configurations
- Covered multiple tetrahedral and single-column TLP substructure geometries
- Varying water depths, tidal ranges, and offshore site energy exposure (benign and severe) to create a comprehensive suitability matrix for TLP wind turbine technology

• Techno-economic analysis of TLP solutions

- Weighing self-stable TLP substructures against additional support options like barges or buoyant elements.
- Comparing self-stable and hydrostatically unstable platforms to evaluate feasibility.
- Providing insights to inform decision-making on optimal TLP towing configurations.

TLP VIABILITY

- Delivered by ORE Catapult with support from two OEMs specializing in TLP applications for floating offshore wind
 - Marine Power Systems (MPS) and PelaStar, each with ~15 years of experience in offshore renewable energy systems
 - MPS focuses on tetrahedral TLP platforms
 - PelaStar contributed two single-column TLP designs, featuring three and five tendon legs
- Both OEMs supplied versions of their TLP-WT designs for the study
- Designs focussed on extreme loading
 - DLCs 1.6 and 6.1, ad additionally 6.6 and 7.2 for redundancy and robustness

Examples of shallow-draught, tetrahedral TLP design (MPS PelaFlex, left) and deepdraught, single column TLP design (PelaStar, right)

TLP VIABILITY

Design	Substructure concept	Design tailored to water depth	Design tailored to site conditions	# Legs & Tendons
1	Tetrahedral (MPS)	Shallow (70m)	Benign	L3
2	Tetrahedral (MPS)	Shallow (70m)	Exposed	L3
3	Tetrahedral (MPS)	Intermediate (150m)	Benign	L3
4	Tetrahedral (MPS)	Intermediate (150m)	Exposed	L3
5	3-Leg Single column (PelaStar)	Shallow (70m)	Benign	L3 & T6
6	3-Leg Single column (PelaStar)	Intermediate (150m)	Benign	L3 & T6
7	3-Leg Single column (PelaStar)	Intermediate (150m)	Exposed	L3 & T6
8	3-Leg Single column (PelaStar)	Ultra-deep (900m)	Benign	L3 & T6
9	3-Leg Single column (PelaStar)	Ultra-deep (900m)	Exposed	L3 & T6
10	5-Leg Single column (PelaStar)	Shallow (70m)	Benign	L5 & T5
11	5-Leg Single column (PelaStar)	Intermediate (150m)	Benign	L5 & T5
12	5-Leg Single column (PelaStar)	Intermediate (150m)	Exposed	L5 & T5
13	5-Leg Single column (PelaStar)	Ultra-deep (900m)	Benign	L5 & T5
14	5-Leg Single column (PelaStar)	Ultra-deep (900m)	Exposed	L5 & T5

TLP VIABILITY

	Units	Based on DLC 1.6 (operational turbine)		Based on DLC 6.1 (idling turbine)	
		Benign	Exposed	Benign	Exposed
Hs	m	7.5	9.9	7.6	13.3
Peak Wave Period (Tp)	S	9.7	11.1	9.8	12.9
Gamma	./.	5.0	5.0	5.0	5.0
Wave directions	o	120 & 180	120 & 180	120 & 180	120 & 180
Max surface level (from MWL)	m	+0.50	+3.40	+0.50	+3.40
Min surface level (from MWL)	m	-0.50	-3.50	-0.50	-3.50
Reference Current Speed	m/s	0.15	0.14	1.0	1.0
<i>U</i> ₀ (3600, 10) Wind Speed (1hr @ 10m above MWL)	m/s	7.93	8.02	21.3	36.39
Turbulence intensity value	./.	0.077	0.079	0.116	0.145

CATAPULT Offshore Renewable Energy

TECHNO-ECONOMIC ANALYSIS

- Stakeholders engagement, including the supply chain, industry and project partners, to inform the cost model's assumptions:
 - Bottom-up cost modelling: stakeholder engagement with supply chain and industry
 - Top-down cost modelling: stakeholder engagement with project developers
- Identify and assess the cost drivers and their impact on LCOE
- Employ a cash flow model to output LCOE in 2012 and 2024 prices along with other financial metrics.

TECHNO-ECONOMIC ANALYSIS

Platform designs considered:

- i. Tetrahedral TLP Non self-stable
- ii. Single Column TLP Self-stable in towing

iii. Single Column TLP Non self-stable

iv. Semi-submersible

Sensitivity studies

Water depth, shallow, intermediate and deep

Varying distance to shore

Varying failure rates

Each platform is considered in a severe site in the UK utilising, 7 x 15 MW turbines

FINDINGS

- Strengths and Benefits of TLP Technology
 - Limited motion responses
 - Dynamic behavior control through mooring design
 - Constant power control
 - Reduced substructure size
 - Lighter mooring lines & reduced footprint
- Development Challenges
 - Lower towing stability (solutions available)
 - Complexities in mooring and anchoring
- Development Priorities
 - Modular substructure design
 - Advancements in mooring geometry and materials
 - Clear operational processes
 - Hook-up process identified as an area of uncertainty

Examples of commercial TLP design solutions. From top left, clockwise: Stiesdal TetraTLP, MPS PelaFlex, PelaStar, SBM Float4Wind

FINDINGS

- Innovations in Mooring Tendons
 - Recommended leveraging advanced materials with enhanced strength profiles and fatigue resistance
 - Integration with quick-connection components ensures efficient compatibility with anchors and substructures
- Advancements in Anchor Technology
 - Choice of anchors benefits from quick-connection interfaces, streamlining the installation process
 - Innovative anchors expected to offer significant reductions in material and installation costs

Examples of commercial TLP design solutions. From top left, clockwise: Stiesdal TetraTLP, MPS PelaFlex, PelaStar, SBM Float4Wind

KNOWLEDGE GAPS

- Uncertainty in TLP-WT Substructures
 - Uncertainty in expected size and mass of TLP-WT substructures
 - Conflicting opinions within the industry, reliance on academic research, and challenges aligning theoretical models with practical requirements
- Economic Considerations for TLPs
 - TLPs face cost challenges in the demonstration phase
 - Show potential for economies of scale due to inherent performance and weight advantages
- Gaps in Standards for Floating Offshore Wind
 - Geotechnical anchor design, concrete design requirements, commissioning and decom phases
 - Procedures for applying global performance analysis to local structural checks

Examples of commercial TLP design solutions. From top left, clockwise: Stiesdal TetraTLP, MPS PelaFlex, PelaStar, SBM Float4Wind

KNOWLEDGE GAPS

- Vessel Selection for Deep Water Maintenance
 - Vessel selection for in-situ maintenance in deep water sites remains relatively unexplored
 - Approaches for deep water scenarios have been considered, but detailed methodologies for different design types and water depths need clarification
 - Alternative technologies being developed for installations and in-situ maintenance
- TLP-WT Loading Patterns and Station-Keeping
 - Gap in expected loading patterns for next-gen TLP-WTs, including pre-tension and maximum loading
 - Stiffness properties of tendons, installation methodologies for innovative anchors, and research into Load Reduction Devices for TLPs are also lacking

Examples of commercial TLP design solutions. From top left, clockwise: Stiesdal TetraTLP, MPS PelaFlex, PelaStar, SBM Float4Wind

CONTACT US

info@ore.catapult.org.uk

ore.catapult.org.uk

ENGAGE WITH US

GLASGOW BLYTH **LEVENMOUTH GRIMSBY ABERDEEN CHINA** LOWESTOFT **PEMBROKESHIRE CORNWALL**

