France Energies Marines

The Institute for the Energy Transition dedicated to Offshore Wind

Comprehensive Validation of Heavy Lift Maintenance Methods Using Numerical and Basin Test Simulations

Tanguy COQUIO, France Energies Marines Laure COSSALTER, France Energies Marines Mélissa MAK, EDF Pierre-Alain FRÉMONT, SBM Offshore Benoît AUGIER, Ifremer

France Energies Marines in short

Our scientific and technological roadmap

- Major Component Replacement (MCR) is an R&D challenge for Floating wind
 - Despite low failure rates, MCR drive high O&M costs due to expensive materials and long repairs ⁽¹⁾
- For FOWT, accessibility and operability of maintenance methods increase in complexity
 - Farms are in deeper water, beyond jack-up vessel limits
 - Floater motions demand precise dynamic positioning and limited metocean windows
- Reliable, proven MCR solutions needed
 - $\circ~$ Must compete with tow-to-port alternatives for FOWT

(1) Carroll, James, Alasdair McDonald, and David McMillan. 2015. "Failure Rate, Repair Time and Unscheduled O&M Cost Analysis of Offshore Wind Turbines." Wind Energy 19

OBJECTIVES

۲

۲

RETAG

- Development of wind and wave learning-based model ۲
- Implementation of an online forecasting system with scoring ۲

→ Development and assessment of **methodology & simulation tools** for MCR solutions <u>operability evaluation</u>

Case study specifications

Basin test	Numerical study
<text><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></text>	<section-header> Complete Numerical study: Semi submersible VolturnUS-S ⁽¹⁾ + IEA 15MW ⁽²⁾ + MCR solution Mono hull vessel including a 1000t crane Float4Wind + IEA 15MW + MCR solution MCR self erecting system Specific lift case studies </section-header>
	Include a self erecting crane solution

(1) C. Allen *et al.*, 'Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine', Jul. 2020

(2) E. Gaertner et al., 'Definition of the IEA Wind 15-Megawatt Offshore Reference wind Turbine', Mar. 2020.

Case study on one MCR solution: Self erecting, turbine mounted crane

- Advocating for the self-erecting technology:
 - Improved EHS: Less "floating to floating" transfer
 - Higher availability > lower downtime
 - $\circ~$ Resistance to harsh environment
- The self-erecting lifting solution considered is composed of:
 - \circ A platform

9

- \circ A tower + clip
- $\circ~$ A tower top crane
- 2 main operations modes were specifically studied:
 - \circ Float to float transfer of the self-erecting system (1)
 - $\circ~$ MCR operation using tower top crane operation (2)

*The case study is inspired by an MCR solution design and aims at crash-testing the methodology but DOES NOT assess the full system operability

- Objectives
 - Accurate representation of two floating mock-ups
 with their respective mooring
 - Anchoring system for the VUS
 - DP system for the Vessel
 - Calibration of different sea states (including several wave directions)

Basin Test Specification – Maintenance Operation Vessel

- 1 WK ship model
- 2 VUS model
- 3 Springs x 4
- 4 "H" frame vertical beam
- 5 Lines x 4
- 6 Load sensors
- 7 Pulleys x 4
- 8 WK internal frame
- Octagon

- Vessel simplified Dynamic Positioning represented with spring

 4 lines, 4 springs
- 3 HMPE lines connected to 3 springs at the surface for the floater

Basin test analysis – Objectives & Numerical model

- Objective:
 - o Validation of a **basin** numerical model
 - Coupling effects, stiffness and damping validation
 - Decay test
 - RAOs comparison
 - $\circ~$ Calibration of the main FLOWTOM Numerical model:
 - Transfer of specific calibration to the numerical model of the main study
- Numerical model:
 - Floater: VolturnUS-S Semi-submersible + IEA 15MW turbine
 - Vessel: Reduced tanker
 - **Software:** *SIMO v4.26.2* operated in the *SIMA v4.6.3* workbench
 - Hydro:
 - Radiation-Diffraction model
 - Linear hydrostatic stiffness
 - Additional quadratic and linear damping
 - Analysis: Frequential + Time Domain

 \rightarrow Coupling effects (<15s) are completely captured by the numerical model

• Vessel:

- The **basin model** was tuned with additional stiffness and damping to accurately capture basin specificities
- This tuning is not transferable to the main numerical model
- **o** No recommendation for the main FLOWTOM vessel model from decay test analysis

• Semi-submersible floater:

- The strong agreement confirms the numerical model's accuracy for semi-submersible motion
- **o** No recommendation for the main FLOWTOM semi-submersible model from decay test analysis

Case study: Operability definition of MCR steps

Case study specifications

17

(1) C. Allen *et al.*, 'Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine', Jul. 2020

EERA DeepWind Conference – 17/01/2025

(2) E. Gaertner et al., 'Definition of the IEA Wind 15-Megawatt Offshore Reference wind Turbine', Mar. 2020.

Case study specifications

• 2 Floaters:

- FEM/EDF/Basin tests: Semi submersible UMaine VolturnUS-S Reference Platform 15 MW (NREL, 2020)
- SBM Offshore: TLP FLOAT4WIND
- Both including the MCR self erecting system

• 1 Vessel and lift crane:

- o Resized Tanker
- \circ Equipped with Caballo Marango's crane (1000t lift) at mid ship

• 3 Numerical models:

- $\circ~$ FEM with SIMA
- \circ EDF with Diego
- SBM with Orcaflex
- The 3 models were benchmarked

Vessel roll period: 10,5s

Pendulum mode: 7s (self hoisting crane) 9s (blade) 15s (package)

Credit NREL

	EDF R&D	FEM	SBM Offshore
Software	DIEGO	SIMA	ORCAFLEX
Floater Type	Semi-Sub	Semi-Sub	TLP
Floater Name	VolturnUS-S	VolturnUS-S	Float4Wind
Hydrodynamic 1st order	Radiation/diffraction + additional drag elements	Radiation/diffraction + additional drag elements	Morison
Hydrodynamic 2nd order	MDF + Newman	MDF + Newman	Morison
Mooring	Chain Catenary - FEA	Chain Catenary - FEA	Hybrid Taut -FEA
Vessel	Resized Tanker	Resized Tanker	Resized Tanker
Hydrodynamic 1st order	Radiation/diffraction + additional roll damping	Radiation/diffraction + additional roll damping	Radiation/diffraction + additional roll damping
Hydrodynamic 2nd order	MDF + Newman	MDF + Newman	MDF + Newman
Dynamic positioning	Linearized stiffness + linear damping	Linearized stiffness + linear damping	Linearized stiffness + linear damping
Radiation/Diffraction coupling between the FOWT and the vessel	Yes	Yes	No

Validation method: Synthesis

Case study specifications

- 3 lift cases + 1 survival case
 - Case 1: Package system installation
 - Case 2: Blade replacement
 - Case 2.1: blade transfer
 - Case 2.2: blade connection FOWT standalone
 - Case 3: Hub replacement
 - Case 4: Survival case FOWT standalone

• 2 dof conditions

- X.X.1: No constraint on the package
- X.X.2: Simplified constraints on the package: constant tension tugger line

Metocean conditions & Operability criteria

- FRANCE ENERGIES MARINES
- Each metocean case is tested in one stochastic realization (seed) of 3h, then discretized in 18 windows of 10min.

• Acceptance criteria:

- o Min_dist > Static_dist /3 (SF of 1.5)
- Relative vertical velocity < 0,6m/s
- Horizontal offset (lift vs center MCR) < 1,5m Case 1&2
- Horizontal offset (lift vs Nacelle) < 0,5 m Case 3
- o Tugger_tension < MBL/3</p>

Case 1.1.2: Package system installation with tugger line

Case 1.1.2: Package system installation with tugger line

- Same global behavior for the 2 floaters
- Slightly higher success at Tp ≥ 9s with tugger lines
 - Tugger lines are adding 4% operability on the overall metocean matrix

Operability definition: Sites selection

Case 1.1.2: Package system installation with tugger line

Direction

Case 1.1.2: Package system installation with tugger line

• Optimized weather window in summer (June/July/Aug) in South Brittany (AO5), spring/summer in Mediterranean sea (AO6)

- The success rate & operability of a case are highly corelated with the case definition
- In the particular case of the hub replacement, the "operability scatter" does not reflect the real operability (contact of the hub with bumpers is not considered)

- FLOWTOM project worked at validating engineering and R&D simulation tools for the assessment of MCR solutions operability via basin test and models wide benchmark
- The case study revealed a **robust methodology**:
 - To assess operability of heavy lifting operation and proposed leverages of improvement toward an industrial solution
- Toward the validation of simulation tools for more complex floating to floating operations:
 - $\circ 2^{nd}$ order motions
 - Precise dynamic positioning representation
 - Complex tugger line control (damping tuned)
 - Critical phases analysis "package take-off or landing"
 - Toward the assessment of detailed MCR operations
 - \circ SOV W2W transfer operation \rightarrow STORM project

Contact:

tanguy.coquio@france-energies-marines.org