Improving O&M simulations by integrating vessel motions for floating wind farms

<u>Vinit V. Dighe¹</u>, Lu-Jan Huang¹, Jaume Hernandez Montfort² and Jorrit-Jan Serraris²

¹TNO Wind Energy

²Maritime Research Institute Netherlands (MARIN)

Outline

Research objective

Methodology

Case study

Results

Conclusions

Improving O&M simulations by integrating vessel motions for floating wind farms

Motivation

EU climate target & FOWT potential

- 55% GHG reduction by 2030^[1]
- FOWT can unlock 80% offshore wind potential in deep waters (>50m) ^[2]

O&M challenges

- O&M = 30% of LCOE for FOWT [3]
- High O&M costs linked to Major Component Replacement (MCR)

Evolution of offshore wind energy

Research objective

Major component replacement (MCR) in floating wind involves replacing critical turbine or platform components with specialized tools and planning to minimize downtime.

Research question: How can current O&M models be adapted to incorporate dynamic motion parameters for a more accurate evaluation of FOWT operations?

Improving O&M simulations by integrating vessel motions for floating wind farms

Methodology

Improving O&M simulations by integrating vessel motions for floating wind farms

Reference wind farm sites

	Wind Farm Characteristics				
Farm Layout	100 x 15	5MW			
Floater Type	Semi-Submersible				
Turbine	15 MW NREL turbine (Direct drive)				
Lifetime	25 years				
Location	North Sea: Marram Wind Celtic Sea: Celtic Sea				
Water Depth	87 - 117.5 m 90 – 100 m				
Port	Fraserburght Loughbeg				
Distance to Port	96.83 km 129.66 km				
O&M Stretegy	SOV-based				

Metocean data

Time series plots of mean wind speed (U_{10}) and significant wave height (H_s) for Marram Wind and Celtic Sea C, showing raw data (lighter shades) and moving averages (darker lines) calculated with a bin size of 1000.

Vessel and reliability data

		Vessel C	haracteristics				
Vessel	D/W Rate	M/D Rate	<i>L_{PP}</i> [m]	T [m]	Δ [tons]	T _B [tons]	V _s [kts]
SOV (ROV Supported)	75,000	225,000	84	5.0	6245	73	11.2
AHT (CTV Assisted)	66,000	530,000	88	7.3	7354	250	19.3
AHT	55,000	500,000	88	7.3	7354	250	19.3
Lead Tug Vessel	30,000	200,000	88	7.3	7354	250	19.3 *
Assist Tug Vessel	30,000	200,000	49.5	5.1	2290	100	9.8
SHC assist Tug Vessel	20,000	150,000	49.5	5.1	2290	100	9.8
SSCV, operational	290,000	325,000	120	22.5	49,956	700	0.0
SSCV, transit	290,000	325,000	120	6.67	20,959	700	8.0
SHC platform, transit	80,000	160,000	60	3.33	3947	-	6.8 *
Onshore crane	25,000	185,000	-	-	-	-	-

Vessel characteristics including day/wait rates, mobilization/demobilization rates, dimensions, draft, displacement, bollard pull, and speed.

		O&M characte	ristics		
Component	Maintenance	Failure rate	Cost (€)	Duration (hrs.)	Resources
		Corrective Main	tenance		
Direct Drive Generator	MCR	0.009	236,500	81	2 Tugs + AHT + 8T
	MR	0.03	14,340	25	SOV + 3T
	mR	0.546	1000	7	SOV + 2T
Power Converter	MCR	0.077	55,000	57	2 Tugs + AHT + 41
	MR	0.338	7000	14	SOV + 3T
	mR	0.538	1000	7	SOV + 2T
Main Shaft	MCR	0.009	232,000	48	2 Tugs + AHT + 5T
	MR	0.026	14,000	18	SOV + 3T
	mR	0.231	1000	5	SOV + 2T
Power Electrical System	MCR	0.002	50,000	18	2 Tugs + AHT + 47
	MR	0.016	5000	14	SOV + 3T
	mR	0.358	1000	5	SOV + 2T
Yaw System	MCR	0.001	12,500	49	2 Tugs + AHT + 51
	MR	0.006	3000	20	SOV + 3T
	mR	0.162	500	5	SOV + 2T
Pitch System	MCR	0.001	14,000	25	2 Tugs + AHT + 41
	MR	0.179	1900	19	SOV + 3T
	mR	0.824	500	9	SOV + 2T
Blades	MCR	0.001	445,000	288	2 Tugs + AHT + 21
	MR	0.010	43,110	21	SOV + 3T
	mR	0.456	5000	9	SOV + 2T
Active Ballast System	mR	0.010	1000	8	SOV + 2T
Mooring Lines	MCR	0.013	135,000	360	AHT + CTV + 10T
	MR	0.015	20,000	240	AHT + CTV + 10T
	mR	0.120	1500	40	SOV + 5T
Anchors	MCR	0.013	512,000	360	AHT + CTV + 10T
	MR	0.015	75,000	240	AHT + CTV + 10T
Inter Array Cable	MCR	0.016	220,000	360	SOV + 10T
	MR	0.025	30,000	240	SOV + 10T
Buoyancy Modules	MCR	0.033	100,000	40	SOV + 5T
Export Cable	MR	0.020	30,000	60	SOV + 5T
		Preventive Main	tenance		
WTG	AC	1	1500	24	SOV + 3T
Platform	AC (topside)	1	600	24	SOV + 4T
	AC (underwater)	0.5	1000	12	SOV + 10T

Component-wise O&M overview detailing frequency, duration, and resource requirements.

Strategy 1: Tow-to-Port

- **T2P Process**: Involves disconnecting, towing FOWT to port, replacing components with onshore cranes, and reconnecting offshore.
- **Resources**: Requires lead/assist tugs, onshore cranes, technicians.
- **Operational Limits**: Governed by weather (wave height, wind speed) and motion criteria (vessel acceleration, roll, pitch).

Vessels	Action	Duration (h)	Weather Limits $[H_s^*, U_{10}]$	Motion Limits	
	Mobilize vessels	24	-	-	
	Transfer technicians	1	-	-	
	Transit to site	distance/ vessel speed	[3, 12]	C1	
	Turn off WT		-	-	
Je	Couple with WT	8	[1.75, 15]	C1	
crar	Disconnect MLs & IACs + joint IACs	60	[1.75, 15]	C1	
aic	Tow WT to port	distance/ towing speed	[3, 12]	C1 + C2	
rsho	Quayside operation	6	-	-	
ō	Replace component	MCR (hrs.) component	-	-	
+ Sr	Test & check WT	3	-	-	
st tu	Couple with WT	8	[1.75, 15]	C1	
SS	Quayside operation	6		-	
+	Tow WT to site	distance/ towing speed	[3, 12]	C1 + C2	
tug	Dejoint IACs	12	[1.75, 15]	C1	
ead	Reconnect MLs & IACs	60	[1.75, 15]	C1	
Ľ	WT pre run	4	-	-	
	Turn on WT	-	-	-	
	Transit to port	distance/ vessel speed	[3, 12]	C1	
	Transfer technicians	1	-	-	
	Demobilize vessels	24	-	-	
Criteria		Response	RMS Limit	Unit	
		Surge acc. (X_a)	1.3	m/s ²	
Vessel motio	n limits at CoG [C1]	Sway acc. (Y_a)	1.3	m/s ²	
vesser motion limits at CoG [C1]		Heave acc. (Z_a)	1.9	m/s ²	
		Roll (\$\$	6	deg	
		Surge acc. (X_a)	1.96	m/s ²	
Towing limits at WT's pacelle [C2]		Sway acc. (Y_a)	1.96	m/s ²	
10 wing min	a a tri o nucche [e2]	Roll (ϕ)	5	deg	
		Pitch (θ)	5	deg	

Strategy 2: Floating-to-Floating

- FTF Process: MCR is conducted on-site using an SSCV with a dynamic positioning system and motion-compensating crane.
- Resources: Requires a semi-submersible SSCV, onboard crane, technicians, and advanced motion compensation systems.
- Operational Limits: Governed by vessel motion at the center of gravity and nacelle, with higher weather tolerances than T2P due to SSCV's seakeeping capabilities.

Vessels	Action	Duration (h)	Weather limits $[H_s^*, U_{10}]$	Motion Limits
	Mobilize vessel	24	-	-
	Transfer technicians component	4	-	-
	Transit to site	distance/speed	[4.5, 15]	C1
	Turn off WT		-	-
>	Ballast to draft & deploy crane	4	[3.5, 15]	C1
S	Replace component	MCR (hrs.) \times 1.2	[3.5, 15]	C1 + C3
ŝ	WT pre run	4	-	-
	Turn on WT	-	-	-
	Transit to port	distance/speed	[4.5, 15]	C1
	Transfer technicians component	4	-	-
	Demobilize vessels	24		-
Criteri	ia	Response	RMS Limit	Unit
		Surge acc. (X_a)	1.3	m/s ²
Vessel motion limits at CoG [C1]		Sway acc. (Y_a)	1.3	m/s ²
		Heave acc. (Z_a)	1.9	m/s ²
		Roll (ϕ)	6	deg
Floating to floating limits at nacelle [C3]		Surge (X)	1.5	m
		Sway (Y)	1.5	m
		Heave (Z)	0.4	m

Strategy 3: Self hoisting cranes

- **SHC Process**: MCR is conducted on-site using a self-hoisting crane integrated with the FOWT, mitigating relative motions during lifting.
- **Resources**: Requires a self-hoisting crane platform, small tug, CTV, and technicians for on-site component replacement.
- **Operational Limits**: Governed by weather and heave motion at the SHC platform deck, with active compensation systems ensuring safe lifting.

			-	
Vessels	Action	Duration (h)	Weather Limits $[H_s^*, U_{10}]$	Motion Limits
	Mobilize vessel	24		-
	Transfer technicians and component	4	-	-
rane	Tow SHC platform to site	distance/speed	[3,15]	C1
0 0	Turn off WT	-	-	-
istin	Couple SHC platform to WT	1	[2, 15]	-
oH-	Install crane from platform to tower	3	[3.5, 15]	-
Self	Replace component	MCR (hrs.) \times 1.2	[3.5, 15]	C4
+ 60	Lower crane and preparation	3	[3.5, 15]	-
lltu	Decouple SHC platform from WT	1	[2, 15]	-
Sma	Turn on WT	-	-	-
+	Tow SHC platform to port	distance/speed	[3,15]	C1
E	Transfer technicians and component	4	-	-
	Demobilize vessels	24	-	-
Criteria		Response	RMS Limit	Unit
		Surge acc. (X_a)	1.3	m/s ²
Vascal moti	on limits at CoC [C1]	Sway acc. (Y_a)	1.3	m/s ²
Vessel motion limits at CoG [C1]		Heave acc. (Z_a)	1.9	m/s ²
		Roll (ϕ)	6	deg
Motion crit	eria at SHC platform deck [C4]	Heave (Z)	0.4	m

Key performance indicators

Maintenance and Downtime Cost (MDC): Represents O&M costs and revenue losses in k€/MW/year, providing a clear financial impact of maintenance activities.

$$ext{MDC} = rac{\sum_{i=1}^n \left(C_{v,i} + C_{t,i} + C_{s,i} + L_{r,i}
ight)}{ ext{MW} \cdot ext{year}}$$

Time-based Availability (A_T) [%]: Reflects the percentage of operational time relative to total hours, indicating wind farm efficiency.

$$A_T = rac{T_o}{T_t} imes 100$$

Tow-to-Port strategy

Comparison of MCR strategies

Comparison of MCR strategies

Marram Wind Celtic Sea C T2P Strategy T2P Strategy 300 [s 270 [s 240 240 210 300 00 MCR duration 120 00 00 00 00 00 00 00 00 00 00 0 0 0 0 0 0 0 0 Seasonality trend FTF Strategy FTF Strategy 60 60 Shortest MCR durations [days] MCR duration [days] MCR duration [00 0 0 8 8 IÎ Ħ ţļ 8<mark>4</mark> þ I. ° o o **P**I l o 01 SHC Strategy SHC Strategy 150 150 MCR duration [days] [skp] 0 0 duration [o 90 60 0 / MCR 30 0 0 ļ Ψ₽ Ш ē, TΤ 0 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec UWiSE SafeTrans UWISE SafeTrans

Motion limits in O&M simulations

- **Comparison**: "Tow WT to Port" modeled with static limits and motion limits.
- Key Difference: Incorporating motion limits allows higher H_s(>3 m) by considering vessel dynamics, while fixed conservative limits are seen when using static limits.

Conclusions

- Integrated Methodology: Combines motion-based operational limits using SafeTrans with UWiSE for realistic O&M cost and downtime assessments.
- **Performance Insights**: SHC strategy achieves the lowest MDC costs, while F2F strategy offers the highest availability.
- **Tool Comparison**: Motion-based methodology utilizes realistic operational limits tailored to the FOWT market, offering more applicable assessments than static, conservative limits.

Future works:

- Availability Constraints: Model vessel and spare part availability to reflect real-world limitations.
- **GHG Emissions**: Quantify emissions to evaluate environmental impacts of O&M activities.

References

- 1. Long, Y., Chen, Y., Xu, C., Li, Z., Liu, Y., & Wang, H. (2023). The role of global installed wind energy in mitigating CO2 emission and temperature rising. *Journal of Cleaner Production*, *4*23, 138778.
- 2. Bento, N., & Fontes, M. (2019). Emergence of floating offshore wind energy: Technology and industry. *Renewable and Sustainable Energy Reviews*, *99*, 66-82.
- 3. McMorland, J., Collu, M., McMillan, D., & Carroll, J. (2022). Operation and maintenance for floating wind turbines: A review. *Renewable and Sustainable Energy Reviews*, *163*, 112499.
- 4. TNO (2025). UWiSE: Unified Wind Farm Simulation Environment (<u>https://uwise.tno.nl/</u>)
- 5. MARIN (2025). SafeTrans (https://www.marin.nl/en/jips/networks/safetrans-user-group)

Thank you

email: vinit.dighe@tno.nl

Know more about the project?

Methodology

