

A BRIEF INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

1

Ben and Bjørn Magnus

SINTEF Digital

Bjørn Magnus Mathisen

Senior Researcher PhD in AI and ML, NTNU SINTEF Digital Software Engineering, Safety and Security Trondheim

Ben Tapley

Research Scientist PhD in Applied Mathematics, NTNU SINTEF Digital Analytics and Artificial Intelligence group Oslo

Schedule

- Introduction
- Overview of machine learning types
- ML concepts using neural networks
- Break
- Other supervised ML models
- Probabilistic ML
- Unsupervised ML

AI - Machine learning – Deep learning

() SINTEF

Machine learning

- Everything* that happens in the world can be described by mathematical functions!
- Some of these functions are simple.
- Some are more complex.
- As computers get more advanced, we can solve more problems with them.
- While we might never understand some realworld functions, we can observe their effects by recording <u>data</u>.
- Using this data, we can guess/approximate complex functions.

An A.I.-Generated Picture Won an Art Prize. Artists Aren't Happy.

"I won, and I didn't break any rules," the artwork's creator says.

"I couldn't believe what I was seeing," he said. "I felt like it was demonically inspired — like some otherworldly force was involved."

https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html

Dimensionality reduction

Dimensionality reduction

life expectancy

Dimensionality reduction

Dimensionality reduction

Dimensionality reduction

Dimensionality reduction

- When the dataset includes **labels**
- Given enough

 examples, we can
 learn complex
 relationships
 between the input
 data and the labels

- When the dataset includes **labels**
- Given enough

 examples, we can
 learn complex
 relationships
 between the input
 data and the labels

A simple function: find function f(x), such that f(1)=2, f(2)=3, f(3)=4, f(4)=5

- When the dataset includes **labels**
- Given enough

 examples, we can
 learn complex
 relationships
 between the input
 data and the labels

A simple function: find function f(x), such that f(1)=2, f(2)=3, f(3)=4, f(4)=5

- When the dataset includes **labels**
- Given enough

 examples, we can
 learn complex
 relationships
 between the input
 data and the labels

A simple function: find function f(x), such that f(1)=2, f(2)=3, f(3)=4, f(4)=5

- When the dataset includes **labels**
- Given enough

 examples, we can
 learn complex
 relationships
 between the input
 data and the labels

A simple function: find function f(x), such that f(1)=2, f(2)=3, f(3)=4, f(4)=5 A complex function: identify the species from a picture

SINTEF

Example: regression

X (input data)

Unsupervised learning

- When the dataset has **no labels**
- We want to identify patterns in the data
- Unsupervised -> let the algorithm decide how to label the data

Unsupervised learning

- When the dataset has **no labels**
- We want to identify patterns in the data
- Unsupervised -> let the algorithm decide how to label the data

Unsupervised learning

- When the dataset has **no labels**
- We want to identify patterns in the data
- Unsupervised -> let the algorithm decide how to label the data

Example of unsupervised learning: clustering

Algorithm learns how to label the data y (the colours)

Reinforcement learning

- Similar to the way humans learn
- No data!
- Instead:
 - an environment
 - a way to explore and interact with the environment
 - learn from mistakes and reward good actions

Example: learning to play a video game

() SINTEF

Reward the model for good performance

Let the model optimise its decision making process

Quick summary

We have covered **what** ML it is:

But **how** do ML models work in practice?

Algorithms

(A.B) --- C

(D,E) ---- F

(A.E) ---- G

Association Rule

Learning Algorithms

Dimensional Reduction Algorithms

Artificial Neural Network

Algorithms

Deep Learning

Algorithms

posterior

Bayesian Algorithms

Learning Classifier Systems

SINTEF

Neural networks

() SINTEF

Neural Networks

Neural networks are inspired by the brain. They can approximate complex functions!

y = f(x)

Neural Networks

Neural networks are inspired by the brain. They can approximate complex functions!

y = f(x)

Biological neural network

Neural Networks

Neural networks are inspired by the brain. They can approximate complex functions!

y = f(x)

The Role of Free Parameters

- Neural networks contain many free parameters that control the output of the function
- The goal is to tune these parameters to give the desired output

$$f(x) = \sum_{i=1}^{m} \alpha_i \sigma(w_i^T x)$$

- the "free parameters" are the α_i and w_i

The Role of Free Parameters

- Neural networks contain many free parameters that control the output of the function
- The goal is to tune these parameters to give the desired output

$$f(x) = \sum_{i=1}^{m} \alpha_i \sigma(w_i^T x)$$

- the "free parameters" are the α_i and w_i

Why do they work?

Universal approximation theorem

"There always exists a neural network that can approximate any function"

Why do they work?

Universal approximation theorem

"There always exists a neural network that can approximate any function"

Given a function g(x). Could be unknown or in the form of data $(x_i, g(x_i))$ Then there exists some set of parameters (the α_i and w_i) such that f(x) can be arbitrarily close to any function.

²¹But how to find these parameters?

Why do they work?

Universal approximation theorem

"There always exists a neural network that can approximate any function"

Given a function g(x). Could be unknown or in the form of data $(x_i, g(x_i))$

Then there exists some set of parameters (the α_i and w_i) such that f(x) can be arbitrarily close to any function.

$$f(x) = \sum_{i=1}^{m} \alpha_i \sigma(w_i^T x) \quad \rightarrow \quad \|f(x) - g(x)\| < \epsilon, \quad \forall \epsilon > 0$$

²¹But how to find these parameters?

$$loss = \sum_{i} ||f(x_i) - y_i||^2 = "prediction" - "data labels"$$

$$loss = \sum_{i} ||f(x_i) - y_i||^2 =$$
 "prediction" – "data labels"

Idea: change the parameters to minimise the error on the data set

parameters

Idea: change the parameters to minimise the error on the data set

$$loss = \sum_{i} ||f(x_i) - y_i||^2 = "prediction" - "data labels"$$

loss (error of neural network)

Value of parameters

22

Example: linear regression

Fit a function

$$f(x) = mx + c$$

to the data.

That minimises the MSE loss:

$$loss = \sum_{i} ||f(x_{i}) - y_{i}||^{2}$$

... same for neural networks

Training a neural network

() SINTEF

Error

Choice of free parameters

Error

Choice of free parameters

1. Given a labelled data

2. Choose an ML model, initially, with random parameters

Choice of free parameters

1. Given a labelled data

2. Choose an ML model, initially, with random parameters

Data and feature engineering

- Your ML model can only learn information already in the data!
- Data cleaning, feature engineering/selection can have a bigger effect on model performance

X Mean: 54.2 Y Mean: 47.8 X SD : 16.76 Y SD : 26.93 Corr. : -0.060

An example of bias

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Wolf True: Husky

An example of bias

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Wolf True: Husky

An example of bias

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Wolf True: Wolf

Predicted: Wolf True: Wolf

Predicted: Husky True: Husky

Predicted: Wolf True: Husky

Explainable AI!!

Bias in ChatGPT

() SINTEF

Deep learning

Deeper neural nets allows them to learn more complex functions!

Lots of physics Some physics No physics

Lots of physics Some physics

No physics

Lots of physics

Some physics

No physics

Lots of physics

Some physics

No physics

COFFEE BREAK

36

SINTEF

Examples of methods

Age<30 Yes Eat pizza? No Fit Fit Unfit Decision trees

() SINTEF

(Non-)linear regression

Examples of methods

(Non-)linear regression

Decision trees

Bagging and random forest

Bagging and random forest

Bagging and random forest

() SINTEF

Iteration 1

SINTEF

XGBoost (XAI)

SINTEF

Failures happen

https://towardsdatascience.com/ fixing-your-machine-learning-models-failure-pointse3ec0a047895)

Probabilistic ML

Concept of Bayesian neural networks (from https://sanjaykthakur.com/ 2018/12/05/the-very-basics-of-bayesian-neural-networks/)

Probabilistic ML

MNIST

1 AL

Digital Akademi

UNSUPERVISED LEARNING 101

1

Bjørn Magnus Mathisen Katarzyna Michałowska

Unsupervised learning

- Unlabelled data
- Finding patterns in the data
- Making the data more meaningful

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

Supervised learning is the cherry!

Clustering

Grouping objects to simultaneously obtain:

- 1. Similar objects in the same group
- 2. Dissimilar objects separated into different groups

Source: J. Hu, J. Pei, Subspace multi-clustering: a review, 2017.

() SINTEF

Clustering example: Consumer segmentation

SINTEF

Clustering example: Recommender systems

Recommended for you, Thomas

Clustering example: Image segmentation

Clustering: Other applications

- Document segmentation;
- Taxonomy;
- Gene expression clustering;
- Social network analysis;
- Denoising;
- Anomaly detection...

Clustering: Algorithm K-means

kiosk = cluster centroid buyer = observation (x,y) position of a buyer = features describing an observation

52

vas3k.com/blog/machine_learning/?ref=hn

🕑 SINTEF
Clustering: Optimal number of clusters

The 'best' number of clusters depends on the application

Think about:

- Geographical regions of different sizes
- Taxonomic families
- Etc.

Clustering: Optimal number of clusters

🕥 SINTEF

Clustering: Selection of methods

No Free Lunch Theorem!No algorithm can

perform ideally on all data

scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods

57

- Text
- Pictures
- Timeseries
- Video
- Even..

Echobert. Måløy et al.

Selfsupervised learning – cheat codes

Fishnet. Mathisen et al.

Honorable mentions - VAE

Face image source: Tolstikhin et al., ICLR 2018

How to measure similarity?

- Limited to *description* of observations
- Similarity between observations is defined using inter-observation distance measures or correlation-based distance measures

SINTEF

How to learn the measure of similarity?

Mathisen, B.M., Aamodt, A., Bach, K. *et al.* Learning similarity measures from data. *Prog Artif Intell* **9**, 129–143 (2020). https://doi.org/10.1007/s13748-019-00201-2

Other usages for SSL / similarity

- Embedding search (CLIP/RAG)
- ML assisted data-exploring
- Re-identification (faces, fishes, signatures)

Implementations

PYTÖRCH

Take home messages

- Each context is different
- The model is the data!
- Experimentation is key
- Lots of tricks lies in the preprocessing and data exploration
 - Not all features are important
 - Finding the correct method is an art

Take home messages

- Each context is different
- The model is the data!
- Experimentation is key
- Lots of tricks lies in the preprocessing and data exploration
 - Not all features are important
 - Finding the correct method is an art

Projects

 SESAR EU Exploratory research PROJECT SynthAlr - Improved ATM automation and simulation through AI-based universal models for synthetic data generation

• Subzerospace