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AI - Machine learning – Deep learning
blogs.nvidia.com © NVIDIA

Sense, decide, act and 

adapt

Data driven, Improve 

performance with exposure

Complicated structures e.g. 

neural nets



Machine learning

• Everything* that happens in the world can be 
described by mathematical functions!

• Some of these functions are simple.

• Some are more complex.

• As computers get more advanced, we can 
solve more problems with them. 

• While we might never understand some real-
world functions, we can observe their effects 
by recording data. 

• Using this data, we can guess/approximate 
complex functions. 

https://www.nytimes.com/2022/09/02/technology/ai-artificial-intelligence-artists.html
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Supervised learning

• When the dataset 

includes labels

• Given enough 

examples, we can 

learn complex 

relationships 

between the input 

data and the labels
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Supervised learning

A simple function: find function 

f(x), such that f(1)=2, f(2)=3 , 

f(3)=4 , f(4)=5

A complex function: identify the 

species from a picture 
• When the dataset 

includes labels

• Given enough 

examples, we can 

learn complex 

relationships 

between the input 

data and the labels

Technology for a better society
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Duck

f(x) = ???

X Y
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4
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Example: regression

X (input data)

Y (labels)
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Example of unsupervised learning: 
clustering

slate.com

X1

X2

Algorithm learns how to 
label the data y (the colours)
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Reinforcement learning

• Similar to the way 

humans learn

• No data!

• Instead: 

• an environment

• a way to explore and 

interact with the 

environment 

• learn from mistakes and 

reward good actions 
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Example: learning to play a video game 



Reward the model for good performance 
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Let the model optimise its decision 
making process 

27
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Quick summary

We have covered what ML it is:

16

But how do ML models work in practice?



Neural networks
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nia.nih.gov

Wikimedia.org



Neural Networks

Neural networks are inspired by the brain. They can approximate complex functions! 

y = f(x)
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Neural Networks

Neural networks are inspired by the brain. They can approximate complex functions! 

y = f(x)

Technology for a better society

f = the neural network 

x
f(x)=“duck”

x f = part of your brain

f(x)=“duck”

Biological neural network Artificial neural network
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Why do they work? 

Universal approximation theorem
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function”
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Example: linear regression

x (input data)

y (labels)

Fit a function 

to the data.

That minimises the MSE loss:
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… same for neural networks
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Training a neural network 



Quick summary 

Choice of free parameters

Er
ro

r



Quick summary 

1. Given a labelled 
data

Choice of free parameters

Er
ro

r



Quick summary 

1. Given a labelled 
data

2. Choose an ML model, initially, 
with random parameters

Choice of free parameters

Er
ro

r

f = the neural network 

x y=f(x)



Quick summary 

1. Given a labelled 
data

2. Choose an ML model, initially, 
with random parameters

3. Adjust the parameters using 
gradient descent so the network 
matches the data

Choice of free parameters

Er
ro

r

f = the neural network 

x y=f(x)



Quick summary 

1. Given a labelled 
data

2. Choose an ML model, initially, 
with random parameters

3. Adjust the parameters using 
gradient descent so the network 
matches the data

Choice of free parameters

Er
ro

r

f = the neural network 

x y=f(x)

Many ML models 
are universal 

approximators!



Quick summary 

1. Given a labelled 
data

2. Choose an ML model, initially, 
with random parameters

3. Adjust the parameters using 
gradient descent so the network 
matches the data

Choice of free parameters

Er
ro

r

f = the neural network 

x y=f(x)

Many ML models 
are universal 

approximators!

Your ML model can 
only learn 

information already 
in the data!



Data and feature engineering 
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• Your ML model can only learn 
information already in the data!

• Data cleaning, feature 
engineering/selection can have a 
bigger effect on model 
performance 
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Bias-variance trade off
Under fitting

Over fitting

Good balance
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An example of bias

29 Source: Ribeiro, Singh, Guestrin, (2016); “Why Should I Trust You?” Explaining the Predictions of Any Classifier

Predicted: Wolf
True: Wolf

Predicted: Wolf
True: Wolf

Predicted: Wolf
True: Wolf

Predicted: Husky
True: Husky

Predicted: Wolf
True: Husky

Predicted: Husky
True: Husky

Explainable AI!! 



Bias in ChatGPT
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Deep learning

Deeper neural nets allows 
them to learn more complex 
functions! 
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Training process

Space of all possible 
models a neural net can 
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?

?

?

??

Data

• More data? 
• Larger model? 
• More compute? 
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COFFEE 
BREAK
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Examples of methods

sa
e

d
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d

.c
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m

Support vector machines

(Non-)linear regression C
h

av
an

Neural networks

Decision trees
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Decision trees
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C
h

av
an



Bagging and random forest
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Bagging and random forest
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gdcoder.com



Bagging and random forest
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Verikas et al. 2016

gdcoder.com
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Zhang et al. 2018



Boosting

41

Zhang et al. 2018

XGBoost (XAI)



Failures happen
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https://towardsdatascience.com/

fixing-your-machine-learning-models-failure-points-

e3ec0a047895)



Probabilistic ML
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Concept of Bayesian neural networks (from 

https://sanjaykthakur.com/

2018/12/05/the-very-basics-of-bayesian-neural-networks/)



Probabilistic ML

44

Bayesian neural networks classifying FashionMNIST and 

MNIST
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Machine 
learning

Supervised 
learning

Unsupervised 
learning

Clustering

Selfsupervised
learning

Dimensionality 
reduction

Forecasting

Autoencoders

Reinforcement 
learning

Unsupervised learning

• Unlabelled data

• Finding patterns in the data

• Making the data more meaningful

46

Supervised learning is the cherry!



Clustering

Grouping objects to simultaneously obtain:

1. Similar objects in the same group

2. Dissimilar objects separated into different groups

47

Source: J. Hu, J. Pei, Subspace multi-clustering: a review, 2017.



Clustering example: Consumer segmentation
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Clustering example: Recommender systems
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Clustering example: Image segmentation
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Clustering: Other applications

• Document segmentation;

• Taxonomy;

• Gene expression clustering;

• Social network analysis;

• Denoising;

• Anomaly detection…

51



Clustering: Algorithm K-means

52

vas3k.com/blog/machine_learning/?ref=hn

kiosk = cluster centroid
buyer = observation
(x,y) position of a buyer = features 
describing an observation

https://vas3k.com/blog/machine_learning/?ref=hn


Clustering: Optimal number of clusters

53

The 'best' number of clusters depends on 
the application

Think about:
• Geographical regions of different sizes
• Taxonomic families
• Etc.



Clustering: Optimal number of clusters

• No ground truth = no ideal answer!

• Based on:

• How well the clusters are separated 

-> Maximize the distances

• How similar are the observations within clusters

-> Minimize the distances

• Elbow method: How tight are the 

clusters?

54



Clustering: Selection of methods

55

scikit-learn.org/stable/modules/clustering.html#overview-of-clustering-methods

No Free Lunch Theorem!
• No algorithm can 

perform ideally on all 
data

https://scikit-learn.org/stable/modules/clustering.html
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Selfsupervised learning
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Where is Paris ? In

the

a

most

Technology for a better society

Input

Original «prompt»

Output

France



Selfsupervised learning

Technology for a better society

• Text
• Pictures
• Timeseries
• Video
• Even..



Selfsupervised learning
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Technology for a better society

Echobert. Måløy et al.



Selfsupervised learning – cheat codes

60

Technology for a better society

Fishnet. Mathisen et al.



Honorable mentions - VAE
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Technology for a better society

Face image source: Tolstikhin et al., ICLR 2018



How to measure similarity?

• Limited to description of observations

• Similarity between observations is 

defined using inter-observation 

distance measures or correlation-based 

distance measures

62

p1(x1, y1)

p2(x2, y2)

d = 𝑥2 − 𝑥1 + 𝑦2 − 𝑦1 +⋯

e.g.: Euclidean distance

y

x



How to learn the measure of similarity?

63

Mathisen, B.M., Aamodt, A., Bach, K. et al. Learning similarity measures from data.
Prog Artif Intell 9, 129–143 (2020). https://doi.org/10.1007/s13748-019-00201-2



Other usages for SSL / similarity

• Embedding search (CLIP/RAG)

• ML assisted data-exploring 

• Re-identification (faces, fishes, 

signatures)

64



Implementations
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Take home messages

• Each context is different

• The model is the data!

• Experimentation is key 

• Lots of tricks lies in the preprocessing 

and data exploration

• Not all features are important

• Finding the correct method is an art

66
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Projects

68

• SESAR EU Exploratory research 

PROJECT SynthAIr - Improved ATM 

automation and simulation through 

AI-based universal models for 

synthetic data generation 

• Subzerospace
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