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Hydrogen production with CCS 9‘

. ELEQH ’\@)L Enabling a Low-Carbon Economy via Hydrogen
and CCS

 State-of-the-art low carbon H, production

— Steam Methane Reforming with pre-combustion carbon capture
(solvent: Methyl diethanolamine, MDEA)

* Goals
—> developing a methodology to optimize H, production with CCS
—> testing on a case study with existing technologies

- applying this methodology to new technologies (e.g. Vacuum
Pressure Swing Adsorption)

Cristina Antonini | 6/17/2019 | 2


https://blog.sintef.com/wp-content/uploads/2018/08/Elegancy-logo.png

Low-Carbon Hydrogen Production
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MDEA capture
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1 Romano, M. C,, Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants,
with ATR and MDEA processes. International Journal of Greenhouse Gas Control, 4(5), 785-797.
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This study: advanced MDEA process configuration
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1 Romano, M. C,, Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants,
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MDEA process simulation

* The process is simulated in Aspen Plus®

— RadFrac model with equilibrium stage calculations used for the columns

* The liquid phase is described by the Electrolyte NRTL model, while for the vapour phase
Redlich-Kwong equation of state is used.

—> for CO, compression the Peng-Robinson equation of state is selected
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Mole flow [kmol/hr] | Syngas Raw H, | Pure CO,

H, 4985 4985 0.0003

Co, 1070 107 963
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CH, 200 200 ppm

N, 13 13 ppm
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MDEA process simulation

The process is simulated in Aspen Plus®

— RadFrac model with equilibrium stage calculations used for the columns

The liquid phase is described by the Electrolyte NRTL model, while for the vapour phase
Redlich-Kwong equation of state is used.

—> for CO, compression the Peng-Robinson equation of state is selected

Mole flow [kmol/hr] | Syngas Raw H, | Pure CO,

H, 4985 4985 0.0003

Co, 1070 32 1038

CcO 304 304 ppm

CH, 200 200 ppm

N, 13 13 ppm

Total flow [kmol/hr] 6572 5534 1038
Purity 89.9% 99.9%
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Description of the optimization problem

* Multi-objective optimization problem

1
* To minimize the total specific exergy w while maximizing the capture rate ¥: min {W, @‘

.% T.
W= np z Wpumpi + 7¢ z VVcomprj + Or (1 - 2m>
L J

Mmco, captured

Tamb =282K, ATy = 10K

* All process variables, such as flowrates
and column conditions, could be tuned
to optimize the process

- time demanding

* Faster systematic approach

- define the Key Process Variables,
which will then become the decision
variables in the optimization problem
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Process variables

* Pressure and temperature of the units
* Size of the columns

* Split fractions

* Reboiler duty and feed stages

* Liquid to gas mass flow ratio (L/G)
—> CO, to MDEA molar ratio (¢/m)
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m - MDEA rich stream

- ¢/m depends on the MDEA
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Decision variables and ranges of investigation

CProcess initialization with literature dataD

v

Aspen Plus ® Flowsheet

\ 4

Single-variable sensitivity analysis was
performed on all process variables[ |
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Specific optimization problem

* To minimize the total specific exergy w while maximizing the capture rate ¥

* Genetic algorithm

i 1
1min w, —
C,.""F]'l.bl.bz,fg” LF

Raw H, g
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Key process variables analysis — ¢c/m
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Key process variables analysis — ¢c/m
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Analysis of the optimization results
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Analysis of the optimization results
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*Results taken from an MDEA plant optimization work?

1Romano, M. C., Chiesa, P., & Lozza, G. (2010). Pre-combustion CO2 capture from natural gas power plants,
with ATR and MDEA processes. International Journal of Greenhouse Gas Control, 4(5), 785-797.
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Analysis of the optimization results

At ¥>97% the w exponentially increases

* The contribution of b, becomes more important to reach higher capture rates more efficiently
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Conclusions

* Arigorous approach was developed with the goal of finding the optimal operating conditions of

a MDEA CO, capture plant

— multi-objective optimization was used as a tool to find the Pareto Optimum between the

total specific exergy and the capture rate

— the decision variables were selected among the process variables by performing single-

parameter sensitivity analysis

* The addition of a second splitter is advantageous especially while operating at high capture rates

* To decide how to operate the CO, capture plant, we need to look at the entire process
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Conclusions

* Arigorous approach was developed with the goal of finding the optimal operating conditions of

a MDEA CO, capture plant

— multi-objective optimization was used as a tool to find the Pareto Optimum between the

total specific exergy and the capture rate

— the decision variables were selected among the process variables by performing single-

parameter sensitivity analysis

* The addition of a second splitter is advantageous especially while operating at high capture rates
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Design Improving Energy Consumption
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Modelling Framework

Modelling framework

Implementation
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