Why and When Expansion Work Recovery Makes Sense

INDUSTRY/UNIVERSIT

G

8

R

EFRIGERATION

IILLINOIS

CONDITIONIN

Stefan Elbel

C

PERATIVE RESEARCH CENTER

A NATIONAL SCIENCE FOUNDATION

Res. Asst. Professor, Associate Director Air Conditioning and Refrigeration Center (ACRC) University of Illinois at Urbana-Champaign

> *Chief Engineer* Creative Thermal Solutions, Inc. Urbana IL, USA

U HighEFF Annual Consortium Meeting May 8 - 9, 2019

Presentation Outline

•Thermodynamic cycles:

- Power generation vs. cooling
- Throttling loss and work recovery potential
- Comparison of expander and ejector
- Ejector
 - Cycle implementation
- Summary & conclusions

S. Elbel

NOIS

2 of 12

Background on Rankine Cycle

<u>Rankine Power Cycle</u>

- Purpose: convert heat into power
- Turbine expands in vapor region to generate power

<u>Reverse Rankine Cooling Cycle</u>

- Convert mechanical power into cooling (or heating)
- Throttling valve is used instead of turbine to expand liquid
- Could use expansion machine, but typically not done due to cost

3 of 12

Throttling Loss and Work Recovery

Difference between isentropic and isenthalpic expansion defines throttling loss

Greater throttling loss provides greater opportunity for work recovery

- Work recovery improves cycle performance:
 - Reduced compressor work
 - Increased cooling capacity
- Throttling loss varies greatly depending on fluid properties and operating conditions
- Several devices capable of recovering expansion work (by approaching isentropic expansion):
 - Two-phase ejector
 - Expander
 - (Vortex tube)

S. Elbel

Transcritical CO₂ Refrigeration Cycle

- Has excellent thermophysical properties
 - High thermal conductivity, low viscosity, ...
- Has low critical temperature (only 31°C)
 - Cannot differentiate between vapor and liquid above critical point, i.e. no condensation but instead gas cooling

5 of 12

- Runs as a transcritical cycle at elevated ambient temperatures
 - That is what's causing the efficiency loss in AC operation

 Higher ambient requires higher P_{high}, loss increases

COP Improvement Through Work Recovery Depends on Refrigerant

- CO₂ has larger throttling loss than any other refrigerant
- Needs help at high ambient temperatures
- Work recovery potential increases as high and low temperatures are further apart

Thermodynamic cycle conditions/assumptions:

6 of 12

• $Q_{evap} = 2 \text{ kW}; T_{evap} = 15^{\circ}\text{C}$

•
$$CO_2$$
: $P_{gc} = 90$ bar, $T_{gc,out} = 35^{\circ}C$

Refrigerant	Specific Throttling Loss (kJ kg ⁻¹)	Mass Flow Rate (g s ⁻¹)	Total Throttling Loss (kW)	Maximum COP Improvement (%)
CO ₂ (no IHX)	7.10	17.0	0.121	56.5
CO ₂ (ε _{IHX} = 0.6)	5.54	13.8	0.076	38.8
R410A	1.95	11.9	0.023	17.6
R134a	1.27	12.7	0.016	12.4
Del	M.			

HighEFF Annual Consortium Meeting

Two-phase Ejector for Expansion Work Recovery

- High-energetic motive stream accelerated in motive nozzle (low static pressure, high kinetic energy)
- Suction flow pre-accelerated in suction nozzle to reduce mixing losses caused by shearing
- Low-energy suction stream is entrained, accelerated by momentum transfer; velocities equalize during mixing, pressure rise in mixing chamber (possibility of shocks)

Suction Fluid Diffuser

7 of 12

Mixing Section

Deceleration in subsonic diffuser; further increase of static pressure

HighEFF Annual Consortium Meeting

S. Elbel

How to Implement Two-phase Ejector?

• Standard two-phase ejector cycle: high-pressure fluid from the gas cooler is used to increase the pressure of the vapor from the evaporator.

 Improvement mechanisms of ejector cycle compared to conventional expansion valve cycle:

NOIS

8 of 12

- Reduced compressor work (ejector provides pressure lift)
- Potentially improved evaporator performance (liquid feeding)
- Higher compressor efficiency (lower pressure ratio)
- Lower compressor discharge temperature
- Improved evaporator distribution

What Influences the COP Improvement that an Ejector Cycle can Achieve?

- Review paper^{*} on recent ejector studies showed experimental studies generally observe the following COP improvements with and ejector:
 - 15 30 % with CO₂
 - 10 15 % with R410A
 - ~ 5 % with R134a and R1234yf
- CO₂ applications that benefit most from twophase ejectors
 - Air-conditioning at high ambient temperature
 - Commercial refrigeration
 - Low temperature heat pumps
 - Heat pump water heaters, ...

CO₂ system at matched 4.8 kW capacity T_{amb} = 45°C, T_{evap} = 5°C

nis

10 of 12

HighEFF Annual Consortium Meeting

S. Elbel

Summary and Conclusions

- Conventional cooling cycles use isenthalpic throttling instead of expansion turbine (cost)
- Fluids with large throttling losses (e.g. transcritical CO₂) greatly benefit from expansion work recovery
 - Work recovery provides cycle efficiency boost at high ambient temperatures
- Large difference between ambient and evaporation temperature increases work recovery potential
- Expander and ejectors can provide work recovery
 - COP gains of 10 to 30%
- Ejector appears to be most cost effective solution
- First commercial applications
 - Supermarkets, some automotive, industrial refrigeration, ...
- More research needed: controls, efficiency, design for part-load, ...

11 of

Thank You for Your Attention!

Stefan Elbel

elbel@illinois.edu

stefan.elbel@creativethermalsolutions.com

