Tighter profit margins mean that poorer/cheaper fuel qualities become interesting, as well as operational optimization with respect to efficiency and capacity maximization. NOx, particulate and CO emissions are special concerns, as well as the operational challenges following particle deposition on heat transfer surfaces. The majority of the operational BtE and WtE plants in Norway are grate fired plants, and even though different grate technologies have been developed, they suffer from both variations in fuel quality and changing operating conditions, resulting in non-optimum operating conditions. The most cost-effective measure to abate the resulting operational challenges, including increased emission levels, are with primary measures.
Computational Fluid Dynamics (CFD) is the ultimate design tool for BtE and WtE plant combustion and heat transfer sections, however, cost-effective sub-models need to be developed, implemented and used in an optimum way. Moreover, the CFD simulations need to be carried out for transient conditions, to study the effect of changing operating conditions, and minimize the impact of these through improved plant operation and operational guidelines.
GrateCFD therefore focuses on enabling optimum grate fired BtE and WtE plant operation through CFD aided design and operational guidelines. Improved models and modelling approaches, in combination with targeted experiments/measurement campaigns, are keys for future's increased sustainable BtE and WtE plants. This will have a significant impact on two of the most important renewable value chains in Norway today, the BtE and WtE value chains.
The project is a KPN-project (Competence building project for the industry) supported by the Research Council of Norway.
The project budget is 24 mill NOK, with 80% from the Research Council and 20% from the industry.