MRSTlogo_web_banner_light_thinner_Epi.png

Comparison of VE saturation and height formulations

Here, we study the use of different formulations for the vertical equlibrium approximations to the two-phase flow in reservoirs.

  1. Using the height $h$ of the CO2 column as primary variable, a mimetic discretization of the pressure equation, and a transport solver based on explicit time stepping. This was the original formulation in the vertical average module.
  2. Using fractional height ($S=h/H$) as primary variable, a standard two-point discretization for the pressure equation, and the standard implicit transport solver from mrst core.

The example also sets up a complete input deck (in Eclipse format) which can be used for simulation by traditional solvers

Contents

Background

We start with the multiphase version of Darcy's law:

$$ v_{\alpha}= - \frac{1}{\mu} K k_{r\alpha}(s_{\alpha}) (\nabla p_{\alpha} - \rho_{\alpha} \nabla z), \qquad \alpha=\{\mathrm{CO_2},\mathrm{water}\}.$$

By integrating in the vertical direction and assuming vertical equlibrium with a sharp interface between the two fluids and constant permeability and porosity, we obtain the upscaled version of Darcy's law

$$ V_{\alpha}= - \frac{1}{\mu} K k_{r\alpha}(1) h       (\nabla_{\parallel} P_{\alpha}- \rho_{\alpha} \nabla_{\parallel}       z), \qquad \alpha=\{\mathrm{CO_2},\mathrm{water}\}.$$

If we now introduce $S$ as the fractional height $h/H$ of the CO2 column, Darcy's law can be reformulated using $S$ as variable

$$ V_{\alpha}= - \frac{1}{\mu} (HK) k_{r\alpha} S       (\nabla_{\parallel} P_{\alpha}- \rho_{\alpha} \nabla_{\parallel}       z)$$

As usual the pressure equation from incompressible flow is obtaind by

$$\nabla\cdot v = q, \qquad v=\sum_{\alpha} V_{\alpha},$$

where $v$ is the Darcy velocity (total velocity) and $\lambda_t$ is the total mobility, which depends on the water saturation $s_w$.

The transport equation (conservation of the CO2 phase) in its simplest form for the S-formulation

$$ \phi \frac{\partial S}{\partial t} +     \nabla \cdot (f(S)(v + K \lambda_o (\nabla_{\parallel} (p_c + \rho z) )) = q_w$$

and for the $h$ formulation

$$ \phi \frac{\partial h}{\partial t} +     \nabla \cdot (f(h) (v + K \lambda_o (\nabla_{\parallel} (p_c + \rho z) )) = q_w$$

Notice, however, that the fractional flow functions $f$ and the capillary pressure function $p_c$ have a different interpretation than in a standard fractional flow model.

try
   require deckformat gridtools
catch %#ok<CTCH>
   mrstModule add deckformat gridtools
end

Parameters for the simulation

gravity on
[nx,ny,nz] = deal(50, 1, 1);     % Cells in Cartsian grid
[Lx,Ly,H]  = deal(2000,1000,15); % Physical dimensions of reservoir
total_time = 100*year;           % Total simulation time
nsteps     = 40;                 % Number of time steps in simulation
dt         = total_time/nsteps;  % Time step length
inj_time   = total_time/10;      % Injetection time
perm       = 100;                % Permeability in milli darcies
K          = perm*milli*darcy(); % Permeability in SI units
phi        = 0.1;                % Porosity
depth      = 1000;               % Initial depth
ipress     = 200;                % Initial pressure

Create input deck and convert to SI units

Create an input deck that can be used together with standard black-oil solvers. To this end, the 2D reservoir is described as a volumeric slice of a 3D reservoir.

deck = sinusDeck([nx ny nz], [Lx Ly H], nsteps, dt, -pi/180, depth, phi, ...
                 perm, (H*phi*Lx*Ly)*0.2*day/inj_time, ipress);
deck = convertDeckUnits(deck);

Instantiate grid and rock structures

Read the input deck to create a 3D grid, from which we can construct the top-surface grid used for the vertical equilibrium calculations

G = initEclipseGrid(deck);
G = computeGeometry(G);

Gts = topSurfaceGrid(G);
Gts.cells.H = H*ones(Gts.cells.num,1);
Gts.columns.dz = ones(numel(Gts.columns.cells),1)*H/nz;
Gts.columns.z = cumulativeHeight(Gts);

% get permeability
rock   = initEclipseRock(deck);
rock2d = averageRock(rock, Gts);

% Note that the top-surface grid is modified with an extra field that
% defines a function handle to how to calculate the gravity contribution.
% This is the part which is VE spesific.
Gts.grav_pressure
ans = 

    @(g,omega)gravPressureVE_s(g,omega)

Define boundary conditions, source terms, and fluid properties

Boundary conditions are no-flow and there are no source terms. Hence, these need not be specified explicitly, but we include them as a hook if the reader wants to extend the routine to more general cases.

[bc_s, bc_h]   = deal([]);
[src_s, src_h] = deal([]);
for i=1:numel(src_h)
    src_h.sat = nan;
    src_h.h = Gts.cells.H(src_s.cell);
end

% Extract fluid properties from input deck, but use different saturations.
mu = [deck.PROPS.PVDO{1}(1,3), deck.PROPS.PVTW(1,4)];
rho = deck.PROPS.DENSITY(1:2);
sr = 0.3;
sw = 0.3;

Define wells

We extract arbitrarily the first set of wells from the deck constructed for a general black-oil solver. Since the grid specified in the input deck is only one cell thick, the well indices calculated in 3D will also be correct for the VE simulation. However, we need to make to other modifications. First, if the well is specified as 'resv', we change the specification to rate. Likewise, we correct the definition of input value according to solver so that CO2 is injected correctly in each two-phase VE solver.

W_3D = processWells(G, rock, deck.SCHEDULE.control(1));
for i=1:numel(W_3D)
    if(strcmp(W_3D(i).type,'resv'))
        W_3D(i).type='rate';
    end
end
W_h = convertwellsVE(W_3D, G, Gts, rock2d,'ip_simple');
W_s = convertwellsVE(W_3D, G, Gts, rock2d,'ip_tpf');
for i=1:numel(W_h)
    W_s(i).compi=[1 0];
    W_h(i).compi=nan;
    W_h(i).h = Gts.cells.H(W_h(i).cells);
end

Set up solver based on h-formulation

Create a cell array to hold helper variables and function handles for each solver.

problem = cell(2,1);
tmp.fluid = initVEFluidHForm(Gts, 'mu', mu, 'rho', rho, 'sr', sr,'sw', sw);
tmp.sol   = initResSol(Gts, 0);

% Set up wells, boundary conditions and source terms
[tmp.W, tmp.bc, tmp.src] = deal(W_h, bc_h, src_h);

% Define pressure and transport solvers with common interfaces. For the
% mimetic pressure solver, we need to precompute inner products
S = computeMimeticIPVE(Gts,rock2d,'Innerproduct','ip_simple');
tmp.psolver = @(sol, fluid, W, bc, src) ...
   solveIncompFlowVE(sol, Gts, S, rock2d, fluid, 'wells', W, 'bc', bc, 'src', src);
tmp.tsolver = @(sol,fluid, dt, W, bc, src) ...
   explicitTransportVE(sol, Gts, dt, rock, fluid, 'computeDt', true, ...
   'intVert_poro', false,'intVert',false,'wells',W,'bc',bc, 'src', src);

% As this solver solves for height of CO2 plume, it is not neccessary to
% compute h from saturation values but have to find the saturation
tmp.compute_h=false;
tmp.compute_sat=true;

% Miscellaneous
tmp.col  ='r-';
tmp.name = 'H formulation using explicit transport and mimetic discretization';

% Insert in cell array
problem{1} = tmp;
clear tmp

Set up solver based on S-formulation

The S-formulation uses standard solvers, except for the function handle 'twophaseJacobian' in the solution object, which here points to a slightly extended version of the original formulation of the Jacobi system ('twophaseJacobian') normally used in MRST

tmp.fluid = initSimpleVEFluid_s('mu', mu, 'rho', rho, ...
                                'height', Gts.cells.H, 'sr', [sr, sw]);
tmp.sol   = initResSolVE_s(Gts, 0, [1 0]);
tmp.sol.twophaseJacobian

% Set up wells, boundary conditions and source terms
[tmp.W, tmp.bc, tmp.src] = deal(W_s, bc_s, src_s);

% For the TPFA pressure solver, we need to calculate transmissibilities for
% the 2D top-surface grid. Depending on the definition of area and length
% in the top-surface grid this may or may not treat length along the
% surface.
T = computeTrans(Gts,rock2d);
T = T.*Gts.cells.H(gridCellNo(Gts));
tmp.psolver = @(sol,fluid, W, bc, src) ...
   incompTPFA(sol, Gts, T, fluid, 'wells', W, 'bc', bc, 'src', src);
tmp.tsolver = @(sol,fluid,dt,W,bc, src) ...
   implicitTransport(sol, Gts, dt, rock2d, fluid, 'wells', W, 'bc', bc, 'src', src);

% One need to calculate h separatly since the solver does not
tmp.compute_h = true;
tmp.compute_sat = false;

% Miscellaneous
tmp.col = 'gs';
tmp.name = 'S formulation using implicit transport and two point flux';

% Insert in cell array
problem{2} = tmp;
clear tmp;
ans = 

    @twophaseJacobianWithVE_s

Initialize solution and variables

for kk=1:numel(problem)
    s0 = deck.SOLUTION.SOIL;
    h0 = deck.SOLUTION.SOIL.*Gts.cells.H;
    problem{kk}.sol.s = s0;
    problem{kk}.sol.h = h0;
    problem{kk}.sol.extSat = [s0, s0];
    problem{kk}.sol.h_max = h0;

    % Timers for pressure and transport solve
    problem{kk}.p_time=0;
    problem{kk}.t_time=0;
end

% Variables used for plotting
xc = Gts.cells.centroids(:,1);
zt = Gts.cells.z;
zb = Gts.cells.H+zt;
vol  = rock2d.poro.*Gts.cells.volumes.*Gts.cells.H;

Run the transport simulation.

fig1 = figure(1); p=get(fig1,'Position'); set(fig1,'Position', [p(1:2) 1020 420]);
fig2 = figure(2);

fprintf(1,' Free volumes [1e6 m^3]\n');
fprintf(1,'Time     H-form     S-form\n');
fprintf(1,'------------------------------\n');
fprintf(1,'%6.2f   %f   %f\n', 0.0, 0.0, 0.0);
t = 0;
while t < total_time
    set(0, 'CurrentFigure', fig1); clf
    set(0, 'CurrentFigure', fig2); clf
    for kk=1:numel(problem)
        tmp = problem{kk};

        if(t<inj_time)
           [W, bc, src] = deal(tmp.W, tmp.bc, tmp.src);
        else
           [W, bc, src] = deal([]);
        end

        % Solve the pressure
        timer = tic;
        tmp.sol = tmp.psolver(tmp.sol, tmp.fluid,  W, bc, src);
        tmp.p_time = tmp.p_time + toc(timer);

        % Using the computed fluxes, solve the transport
        timer = tic;
        if t>inj_time
           % uncomment to forcing zero total flow
           tmp.sol.flux(:) = 0;
        end
        tmp.sol = tmp.tsolver(tmp.sol,tmp.fluid,dt,W,bc, src);
        tmp.t_time =tmp.t_time + toc(timer);

        if tmp.compute_h
            % Compute h if this problem needs it
            [h, h_max]    = tmp.fluid.sat2height(tmp.sol);
            tmp.sol.h     = h;
            tmp.sol.h_max = h_max;

            % set the value s_max for convenience
            tmp.sol.s_max = tmp.sol.extSat(:,2);
        end
        if tmp.compute_sat
            % if the solver does not compute s and s_max, calculate them
            h     = tmp.sol.h;
            h_max = tmp.sol.h_max;
            tmp.sol.s =  (h*(1-sw) + (h_max - h)*sr)./Gts.cells.H;
            tmp.sol.s_max =  h_max*(1 - sw)./Gts.cells.H;
        end

        % Special type of plot if solving a 2D VE problem
        if Gts.cartDims(2)>1
            subplot(numel(problem),2,(2*(kk-1))+1)
            pcolor(X,Y,reshape(tmp.sol.h,Gts.cartDims))
            if kk==1, cxs=caxis(); else caxis(cxs); end;
            title(['Height ',num2str(kk)]);
            colorbar,shading interp

            subplot(numel(problem),2,(2*(kk-1))+2)
            pcolor(X,Y,reshape(tmp.sol.max_h,Gts.cartDims))
            caxis(cxs)
            title(['Max Height',num2str(kk)]);colorbar,shading interp

            problem{kk} = tmp;
            continue;
        end

        % Plot current and observed maximal values for h and S
        set(0, 'CurrentFigure', fig1);
        subplot(2,4,1), hold on
        plot(xc, tmp.sol.h, tmp.col); ylim([0 H])
        if kk==1, axh=axis(); else axis(axh); end
        title('Height'); xlabel('x'); ylabel('h');

        subplot(2,4,2), hold on
        plot(xc, tmp.sol.h_max, tmp.col); ylim([0 H])
        if kk==1, axh_max=axis(); else axis(axh_max);  end
        title('Max height'); xlabel('x'); ylabel('h_max') ;

        subplot(2,4,5), hold on
        plot(xc, tmp.sol.s(:,1), tmp.col); ylim([0 1])
        if kk==1; axs=axis(); else axis(axs); end
        title('Saturation'); xlabel('x'); ylabel('s')

        subplot(2,4,6), hold on
        plot(xc, tmp.sol.s_max(:,1), tmp.col); ylim([0 1]);
        if kk==1, axs_max=axis(); else axis(axs_max); end
        title('Max Saturation'); xlabel('x'); ylabel('s_max')

        set(0, 'CurrentFigure', fig1);
        subplot(2,4,[3 4 7 8]); set(gca,'YDir','reverse')
        hold on
        plot(xc,zt+tmp.sol.h, [tmp.col(1) '-'])
        plot(xc,zt+tmp.sol.h_max, [tmp.col(1), '--'])
        if kk==2
           patch(xc([1 1:end end]), [min(zt)-1; zt; min(zt)-1], .85*[1 1 1]);
           patch(xc([1 1:end end]), [max(zb)+1; zb; max(zb)+1], .85*[1 1 1]);
           legend('Free CO2, h', 'Max CO2, h', 'Free CO2, S', 'Max CO2, S', 4);
           box on;axis tight; title('Surfaces'); xlabel('x'); ylabel('depth')
        end

        % Plot pressures.
        set(0, 'CurrentFigure', fig2); set(gca, 'YDir', 'reverse')
        hold on
        plot(xc, tmp.sol.pressure/barsa, tmp.col)
        if ~tmp.compute_sat
           % Also plot CO2 pressure: The default is to use the pressure of
           % the second phase pressure for the incompressible solvers
           plot(xc,(tmp.sol.pressure-tmp.fluid.pc(tmp.sol)),['-',tmp.col])
        else
           plot(xc,(tmp.sol.pressure-norm(gravity)*rho(1)*tmp.sol.h),['s',tmp.col])
        end
        xlabel('x'); ylabel('pressure')
        title('Comparing pressure for the different solvers')

        % Update solution object
        problem{kk} = tmp;
    end
    set(0, 'CurrentFigure', fig1); drawnow;
    set(0, 'CurrentFigure', fig2); drawnow;

    t=t+dt;

    % Print CO2 inventory
    fprintf(1,'%6.2f   %f   %f\n', t/year, ...
       sum(problem{1}.sol.s.*vol)/1e6, ...
       sum(problem{2}.sol.s.*vol)/1e6 );

end
fprintf(1,'-----------------------------------------\n\n');
 Free volumes [1e6 m^3]
Time     H-form     S-form
------------------------------
  0.00   0.000000   0.000000
  2.50   0.150000   0.148380
  5.00   0.299427   0.288994
  7.50   0.431549   0.403057
 10.00   0.536992   0.505008
 12.50   0.536992   0.505008
 15.00   0.536992   0.505008
 17.50   0.536992   0.505008
 20.00   0.536992   0.505008
 22.50   0.536992   0.505008
 25.00   0.536992   0.505008
 27.50   0.536992   0.505008
 30.00   0.536992   0.505008
 32.50   0.536992   0.505008
 35.00   0.536992   0.505008
 37.50   0.536992   0.505008
 40.00   0.536992   0.505008
 42.50   0.536992   0.505008
 45.00   0.536992   0.505008
 47.50   0.536992   0.505008
 50.00   0.536992   0.505008
 52.50   0.536992   0.505008
 55.00   0.536992   0.505008
 57.50   0.536992   0.505008
 60.00   0.536992   0.505008
 62.50   0.536992   0.505008
 65.00   0.536992   0.505008
 67.50   0.536992   0.505008
 70.00   0.536992   0.505008
 72.50   0.536992   0.505008
 75.00   0.536992   0.505008
 77.50   0.536992   0.505008
 80.00   0.536992   0.505008
 82.50   0.536992   0.505008
 85.00   0.536992   0.505008
 87.50   0.536992   0.505008
 90.00   0.536992   0.505008
 92.50   0.536992   0.505008
 95.00   0.536992   0.505008
 97.50   0.536992   0.505008
100.00   0.536992   0.505008
-----------------------------------------

 

Output calculation time

for kk = 1:numel(problem)
   fprintf('Time used for solving with:\n\t%s\n',problem{kk}.name);
   fprintf('\tPressure time : %2.2d sec\n' ,problem{kk}.p_time)
   fprintf('\tTransport time : %2.2s sec\n',problem{kk}.t_time)
end
Time used for solving with:
	H formulation using explicit transport and mimetic discretization
	Pressure time : 1.88e-01 sec
	Transport time : 1.08e+00 sec
Time used for solving with:
	S formulation using implicit transport and two point flux
	Pressure time : 1.46e-01 sec
	Transport time : 1.22e+01 sec

Compare with analytical pressure

The state is almost stationary and we therefore add a comparison with pressures computed analytically. In the example, it is always only water at the bottom. For hydrostatic conditions, we can therefore find the pressure at the bottom relative to a given datum (here, we use the pressure at the top of the first column).

set(0, 'CurrentFigure', fig2); clf, hold on
set(gca, 'YDir', 'reverse')

p   = tmp.sol.pressure(1);
hh  = problem{1}.sol.h;
hs  = problem{2}.sol.h;
rwg = rho(2)*norm(gravity);
z   = Gts.cells.z;
H   = Gts.cells.H;

% Water pressure at the bottom
pwb = p + rwg*(z - z(1) + H(1));
plot(xc, pwb,'dk-')
text(xc(6),pwb(5), '\leftarrow Water pressure at bottom', ...
   'HorizontalAlignment', 'left')

% Water pressure extrapolated hydrostatic to the top of the reservoir
pwt = p + rwg*(z - z(1));
plot(xc, pwt, 'dk-')
text(xc(end-4), pwt(end-3), 'Water extrapolated to top \rightarrow', ...
   'HorizontalAlignment', 'right')

% water pressure at interface between CO2 and water
pwi = p + rwg*(z - z(1) + hh);
plot(xc, pwi,'dk-')
text(xc(10),pwi(7),'\uparrow Pressure at interface')

% CO2 pressure at the top surface
pco2 = p + rwg*(z+-z(1)+H(1)) - norm(gravity)*(rho(2)*(H - hs) + rho(1)*hs);
plot(xc, pco2, 'dr-');
text(xc(end-4), pco2(end-3),'Pressure at top \rightarrow', ...
   'HorizontalAlignment', 'right', 'Color', 'r')

% In this plot of the pressure at the end we see
%    - The mimetic calculate the pressure at the interface between
%        CO2 and water
%      - The tpfa with the given fluid calculate the extrapolated
%        water pressure at the top

Published February 12, 2013