MRSTlogo_web_banner_light_thinner_Epi.png

Journal papers using MRST
The following list comprises journal papers that extensively utilize MRST as a research tool. Notably, all papers are authored primarily by researchers not affiliated with the MRST development team at SINTEF.
2024
  1. D. Shi, S. Cheng, Q. Wang, D. Liu, F. Yin, X. Xu, X. Guo, Z. Weng. Comparative analysis and application of mass and heat transfer simulation in fractured reservoirs based on two fracture models. Processes, 2024, 12(11), 2399. DOI: 10.3390/pr12112399.
  2. A. Bahmaee, Y. Masuda, S. Murata. Numerical modelling of CO2-in-water emulsion injection into a water-saturated core. Gas Science and Engineering. 2024. DOI: 10.1016/j.jgsce.2024.205485.
  3. C. Xiao, T. Liu, L. Zhang, Z. Li. Use of deep-learning-accelerated gradient approximation for reservoir geological parameter estimation. Processes. 2024, 12(10), 2302. DOI: 10.3390/pr12102302.
  4. L. Wu, J. Wang, D. Jia, R. Zhang, J. Zhang, Y. Yan, S. Wang. A multi-scale numerical simulation method considering anisotropic relative permeability. Processes. 2024, 12(9), 2058. DOI: 10.3390/pr12092058.
  5. P. Jia, H. Guo, H. Gao. Studying the impact of pore sizes on gas flow and distribution in volatile carbonate reservoirs using a new triple-porosity model. Physics of Fluids. 2024, 36, 103103. DOI: 10.1063/5.0226865.
  6. Z. Zhou, H. Jia, R. Zhang, B. Ding, X. Geng. Three dimensional time-variation simulator for water flooding reservoir based on “effective water flux”. Physics of Fluids. 2024, 36, 103101. DOI: 10.1063/5.0223534.
  7. L. Wang, R. Deng, L. Zhang, J. Qu, H. Wang, L. Zhang, X. Zhao, B. Xu, X. Lv, C.D. and Adenutsi. A novel surrogate-assisted multi-objective well control parameter optimization method based on selective ensembles. Processes. 2024, 12(10), 2140. DOI: 10.3390/pr12102140.
  8. M. Lu, Q. Qian, A. Zhong, F. Yang, W. He, and M. Li, High-precision flow numerical simulation and productivity evaluation of shale oil considering stress sensitivity, Fluid Dynamics and Materials Processing, vol. 20, no. 10, 2024, pp. 2281-2300. DOI: 10.32604/fdmp.2024.051594.
  9. J. Iranzi, Y. C. Park, and H. Son, Coupling effects of surfactant-induced interfacial tension reduction and wettability alteration in CO2 storage. Energy & Fuels, 2024. DOI: 10.1021/acs.energyfuels.4c03431.
  10. J. A. Fernandes, J. S. Azevedo, and S. P. Oliveira. A combined Markov Chain Monte Carlo and Levenberg–Marquardt inversion method for heterogeneous subsurface reservoir modeling. Discover Applied Sciences, 2024. DOI: 10.1007/s42452-024-06214-4.
  11. J. Bao, H. Yoon, and J. Lee. CO storage site characterization using ensemble-based approaches with deep generative models. Geoenergy Science and Engineering, 2024. DOI: 10.1016/j.geoen.2024.213294.
  12. X. Liu, S. Geng, J. Sun, Y. Li, Q. Guo, and Q. Zhan. Novel coupled hydromechanical model considering multiple flow mechanisms for simulating underground hydrogen storage in depleted low-permeability gas reservoir. International Journal of Hydrogen Energy, Volume 85, October 2024, Pages 526-538. DOI: 10.1016/j.ijhydene.2024.08.366.
  13. L. Shi, H. Yang, Z. Ji, L. Jiang, and C. Yang. Field-split preconditioned active-set reduced-space algorithm for complex black oil reservoir simulation at large-scale. Journal of Computational Physics, Vol. 517, 2024, 113362. DOI: 10.1016/j.jcp.2024.113362.
  14. D. Shi, S. Cheng, W. Bai, X. Liu, and D. Cai. Numerical simulation of fracture propagation induced by water injection in tight oil reservoirs. Processes, 2024, 12(8), 1767; 10.3390/pr12081767.
  15. F. Yu, R. Han, and K. Xu. Countercurrent imbibition in porous media with dense and parallel microfractures: Numerical and analytical study. SPE Journal, 2024. DOI: 10.2118/223094-PA.
  16. H. Jia, H. Yu, T. Wang, P. Song, J. Song, and Y. Wang. Investigation of non-chemical CO2 microbubbles for enhanced oil recovery and carbon sequestration in heterogeneous porous media. Geoenergy Science and Engineering, 2024. DOI: 10.1016/j.geoen.2024.213229.
  17. W. Xi, A.U. Kumaran, Y.H. Gholami, R.T. Armstrong, Y. Jing, J. Esterle, K. R. Lieband, and P. Mostaghimi. Gas-water flow in fractured coal revealed by multimodal imaging. International Journal of Coal Geology, Vol. 293, October 2024, 104586. DOI: 10.1016/j.coal.2024.104586.
  18. S. Mohd Razak, J. Cornelio, Y. Cho, H.H. Liu, R. Vaidya, and B. Jafarpour. Dynamic physics-guided deep learning for long-term production forecasting in unconventional reservoirs. SPE Journal, 2024. DOI: 10.2118/221474-PA.
  19. Z. Jia, R. Cao, B. Pu, L. Cheng, P. Li, A.A. Awotunde, Y. Lin, Q. Pan, and Y. Sun. Effects of non-equilibrium phase behavior in nanopores on multi-component transport during CO2 injection into shale oil reservoir. Energy, 2024. DOI: 10.1016/j.energy.2024.132614.
  20. X. Liu, S. Cheng, Y. Cui, Y. Wang, and C. Wei. A dynamic pre-Darcy model and its application in the numerical simulation of enhanced geothermal system. Geoenergy Science and Engineering, 2024. DOI: 10.1016/j.geoen.2024.213193.
  21. Wang, Y., Flauraud, E., Michel, A. et al. A numerical model for offshore Geological Carbon Storage (GCS) undergoing hydrate formation. Computational Geosciences, 2024. DOI: 10.1007/s10596-024-10311-z.
  22. F.O. Alpak, M. Jammoul, M.F. Wheeler, and K. Onyeagoro. Less-intrusive consistent discretization methods for reservoir simulation on cut-cell grids–algorithms, implementation, and testing. Computational Geosciences, 2024. DOI: 10.1007/s10596-024-10299-6.
  23. H. Jia, H. Yu, S. Wang, J. Shi, F. Xie, S. Wang, J. Lu, Y. Wang, and F. Zhang. Investigation of CO2 microbubble assisted carbon sequestration and gravity-induced microbubble ripening in low permeability reservoirs. Applied Energy Volume 373, 1 November 2024, 123954. DOI: 10.1016/j.apenergy.2024.123954.
  24. Y. Wang, Z. Lei, Z. Xu, Y. Liu, X. Pan, Y. Wang, and P. Liu. A compositional numerical study of vapor–liquid-adsorbed three-phase equilibrium calculation in a hydraulically fractured shale oil reservoir Physics of Fluids, 36, 072007, 2024. DOI: 10.1063/5.0214453.
  25. A. Heshmati and M. Taghizadeh Manzari. An integrated approach for simulation of two-phase flows in naturally fractured reservoirs using embedded discrete fracture model and aerial image processing. Sharif Journal of Civil Engineering. DOI: 10.24200/J30.2024.64497.3331.
  26. T. Nan, J. Zhang, Y. Xie, C. Cao, J. Wu, and C. Lu. Effective characterization of fractured media with PEDL: A deep learning‐based data assimilation approach Water Resources Research, 2024. DOI: 10.1029/2023WR036673.
  27. Y. Song, Z. Song, Z. Chen, Y. Mo, Q. Zhou, and S. Tian. Simulation of CO2 enhanced oil recovery and storage in shale oil reservoirs: Unveiling the impacts of nano-confinement and oil composition. Advances in Geo-Energy Research, Vol. 23, No. 2, 2024. DOI: 10.46690/ager.2024.08.05.
  28. J.L. Hernandez-Mejia, M. Imhof, and M.J. Pyrcz. Anomaly detection for geological carbon sequestration monitoring. International Journal of Greenhouse Gas Control Volume 136, July 2024, 104188. DOI: 10.1016/j.ijggc.2024.104188.
  29. W. Xiong, Y.L. Zhao, S.M. Wen, B.N. Zhang, X. Huang, Y.-C.Wang, and T. Zhang. Influence of diffusion, adsorption, connate water, and salinity on enhanced gas recovery and carbon storage reservoir simulations. Energy Fuels, 2024. DOI: 10.1021/acs.energyfuels.4c01869.
  30. J. Chen, J.Y. Leung, and M. van der Baan. Characterization of low-frequency distributed acoustic sensing signals in hydraulic fracturing stimulation – A coupled flow-geomechanical simulation approach. Geomechanics for Energy and the Environment, Volume 39, September 2024, 100574. DOI: 10.1016/j.gete.2024.100574.
  31. M.M. Morales, C. Torres-Verdín, C. and M.J. Pyrcz. Stochastic pix2vid: A new spatiotemporal deep learning method for image-to-video synthesis in geologic CO storage prediction. Computational Geosciences, 20242. DOI: 10.1007/s10596-024-10298-7.
  32. X. Zhao, Z. Chen, L. Zhang, X. Liao, and A.A. Awotunde. Leakage risk assessment on sealing efficiency of caprock during CO2 huff-n-puff for safe sequestration. Geoenergy Science and Engineering. Volume 240, September 2024, 213056. DOI: 10.1016/j.geoen.2024.213056.
  33. M. Zhang, H. Yang, Y. Liu, R. Li. Multilevel Schur-complement algorithms for scalable parallel reservoir simulation with temperature variation. Computer Physics Communications, Volume 304, November 2024, 109296. DOI: 10.1016/j.cpc.2024.109296.
  34. I. de Jonge-Anderson, H. Ramachandran, U. Nicholson, S. Geiger, A. Widyanita, and F. Doster. Determining CO2 storage efficiency within a saline aquifer using reduced complexity models. Advances in Geo-Energy Research, 2024, 13(1): 22-31. DOI: 10.46690/ager.2024.07.04.
  35. M. K. Marvin, Z. M. Sarkinbaka, V. I. Fagorite, and Y. Ishaku. An echo state network approach to data-driven modeling and optimal control of carbonate reservoirs with uncertainty fields. Geoenergy Science and Engineering Volume 239, August 2024, 212996. DOI: 10.1016/j.geoen.2024.212996.
  36. D. Lauzon. A U-Net architecture as a surrogate model combined with a geostatistical spectral algorithm for transient groundwater flow inverse problems. Advances in Water Resources, Volume 189, July 2024, 104726. DOI: 10.1016/j.advwatres.2024.104726.
  37. R. R. Nazaraliyev, A. I. Humbatov, and A. E. Mammadova. Numerical modelling of surfactant-polymer flooding combined with low salinity water flooding in MATLAB: Case study in Neft Dashları. Perm Journal of Petroleum and Mining Engineering. Vol 24, No 1, 2024. DOI: 10.15593/2712-8008/2024.1.5.
  38. B. Zhou, Z. Chen, Z. Song, Z. Tang, B. Wang, and O. Olorode. A new analytically modified embedded discrete fracture model for pressure transient analysis in fluid flow Journal of Hydrology, Volume 636, June 2024, 131330. DOI: 10.1016/j.jhydrol.2024.131330.
  39. J.W.L. Silva, M.D. Santos, and G.P. Oliveira. Generalized functionals for qualification of geological carbon storage injection sites. International Journal of Greenhouse Gas Control, Volume 135, 2024, 104167. DOI: 10.1016/j.ijggc.2024.104167.
  40. T. Cheng, H. Yang, J. Huang, and C. Yang. Adaptive space-time domain decomposition for multiphase flow in porous media with bound constraints. SIAM Journal on Scientific Computing, 2024. DOI: 10.1137/23M1578139.
  41. Z. Safari, R. Fatehi, and R. Azin. Developing a numerical model for microbial methanation in a depleted hydrocarbon reservoir. Renewable Energy, 2024. DOI: 10.1016/j.renene.2024.120426.
  42. Q. Wang, Y. Wang, K. Wang, J. Zhao, Y. Hu, and Y. Li. Evolution law of stress induced by pressure depletion in fractured shale reservoirs: Implications for subsequent refracturing and infill well development. Petroleum, 2024. DOI: 10.1016/j.petlm.2024.04.001.
  43. B. Zhou, Z. Chen, X. Zhao, B. Wang, H. Wang, and K. Sepehrnoori. A three-dimensional numerical well-test model for pressure transient analysis in fractured horizontal wells with secondary fractures. Physics of Fluids, Volume 227, June 2024, 120426. DOI: 10.1063/5.0203853.
  44. M. Petrosyants, V. Trifonov, E. Illarionov, and D. Koroteev. Speeding up the reservoir simulation by real time prediction of the initial guess for the Newton-Raphson's iterations. Computational Geosciences, 2024. DOI: 10.1007/s10596-024-10284-z.
  45. M.K. Marvin, A.B. Ngulde, and Z.M. Sarkinbaka. Optimal control of multilateral waterflooding wells in carbonate reservoirs with uncertainty consideration. Petroleum Science and Technology, 2024. DOI: 10.1080/10916466.2024.2326174.
  46. A.K.L. Limaluka, Y. Elakneswaran, and N. Hiroyoshi. Macroscale modeling of geochemistry influence on polymer and low-salinity waterflooding in carbonate oil reservoirs. ACS Omega, 2024. DOI: 10.1021/acsomega.3c10022 .
  47. Y. Liu, S. Yang, N. Zhang, J. Cao, and C. Guo. Simulation enhancement GAN for efficient reservoir simulation at fine scales. Mathematical Geosciences, 2024. DOI 10.1007/s11004-024-10136-7.
  48. H.U. Rashid and O. Olorode. Use of controlled fractures in enhanced geothermal systems. Advances in Geo-Energy Research, Vol. 12, No. 1, 2024. DOI: 10.46690/ager.2024.04.04.
  49. R. E. Rizzo, N. F. Inskip, H. Fazeli, P. Betlem, K. Bisdom, N. Kampman, J. Snippe, K. Senger, F. Doster, and A. Busch. Modelling geological CO2 leakage: Integrating fracture permeability and fault zone outcrop analysis, International Journal of Greenhouse Gas Control, Volume 133, 2024, 104105. DOI: 10.1016/j.ijggc.2024.104105.
  50. Q. Wang, D. Zhang, Y. Li, C. Li, and H. Tang. Numerical simulation study of CO2 storage capacity in deep saline aquifers. Science and Technology for Energy Transition, 2024. DOI: 10.2516/stet/2024005.
  51. X. Ma, J. Zhao, D. Zhou, K. Zhang, and Y. Tian. Deep graph learning-based surrogate model for inverse modeling of fractured reservoirs. Mathematics, 2024. DOI: 10.3390/math12050754.
  52. M.K. Marvin, A.B. Ngulde, and Z.M. Sarkinbaka. Comparative study on the optimal control of smart well in oil reservoir waterflooding with uncertainty. Geosystem Engineering, 2024. DOI: 10.1080/12269328.2024.2314767.
  53. J. Jiang. Simulating multiphase flow in fractured media with graph neural networks. Physics of Fluids 36, 023115 (2024). DOI: 10.1063/5.0189174.
  54. Y.Z. Wang, R.Y. Cao, Z.H. Jia, B.Y. Wang, M. Ma, and L.S. Cheng. A multi-mechanism numerical simulation model for CO2-EOR and storage in fractured shale oil reservoirs. Petroleum Science, 2024. DOI: 10.1016/j.petsci.2024.02.006.
  55. S. Anyosa, J. Eidsvik, and D. Grana. Evaluating geophysical monitoring strategies for a CO2 storage project. Computers & Geosciences, 2024. DOI: 10.1016/j.cageo.2024.105561
  56. H. Yang, R. Li, and C. Yang. Nonlinearly constrained pressure residual (NCPR) algorithms for fractured reservoir simulation. SIAM Journal on Scientific Computing, Vol. 46, Iss. 1, 2024. DOI: 10.1137/22M1516294.
  57. D. Cao, S. Ayirala, M. Han, and S. Salah. Simulation of hybrid Microsphere-SmartWater recovery process for permeable carbonates. Geoenergy Science and Engineering, 2024. DOI: 10.1016/j.geoen.2024.212696.
  58. F.V. Donzé, L. Bourdet, L. Truche, C. Dusséaux, P. Huyghe, Modeling deep control pulsing flux of native H2 throughout tectonic fault-valve systems, International Journal of Hydrogen Energy, Volume 58, pp. 1443-1456, 2024. DOI: 10.1016/j.ijhydene.2024.01.178.
  59. J. Wu, L. Zhang, Y. Liu, K. Ma, and X. Luo. Effect of displacement pressure gradient on oil–water relative permeability: experiment, correction method, and numerical simulation. Processes, 2024. DOI: 10.3390/pr12020330.
  60. B. Yan, Z. Zhong, and B. Bai. A convolutional neural network-based proxy model for field production prediction and history matching. Gas Science and Engineering, 2024. DOI: 10.1016/j.jgsce.2024.205219.
  61. M. Haugen, L. Salo-Salgado, K. Eikehaug, B. Benali, J. W. Both, E. Storvik, O. Folkvord, R. Juanes, J. M. Nordbotten, and M. A. Ferno. Physical variability in meter-scale laboratory CO2 injections in faulted geometries. Transport in Porous Media, 2024. DOI: 10.1007/s11242-023-02047-8.
  62. A. Rovelli, J. Brodie, B. Rashid, W.J. Tay, and R. Pini. Effects of core size and surfactant choice on fluid saturation development in surfactant/polymer corefloods. Energy & Fuels, 2024. DOI: 10.1021/acs.energyfuels.3c04313.
  63. Z. X. Leong, T. Zhu., and A. Y. Sun. Time-lapse seismic inversion for CO2 saturation with SeisCO2Net: An application to Frio-II site. International Journal of Greenhouse Gas Control Volume 132, February 2024, 104058. DOI: 10.1016/j.ijggc.2024.104058.
  64. Q. Zhang, H. Li, Y. Li, H. Wang, and K. Lu. A dynamic permeability model in shale matrix after hydraulic fracturing: considering mineral and pore size distribution, dynamic gas entrapment and variation in poromechanics. Processes, 2024, 12(1), 117. DOI: 10.3390/pr12010117.
  65. J. Dai, K. Tian, Z. Xue, S. Ren, T. Wang, J. Li, and S. Tian. CO2-enhanced radial borehole development of shale oil: production simulation and parameter analysis Processes, 2024, 12(1), 116. DOI: 10.3390/pr12010116.
  66. T. Esfandi, S. Sadeghnejad, and A. Jafari. Effect of reservoir heterogeneity on well placement prediction in CO2-EOR projects using machine learning surrogate models: Benchmarking of boosting-based algorithms. Geoenergy Science and Engineering, Volume 233, February 2024, 212564. DOI: 10.1016/j.geoen.2023.212564.
  67. E Sarı, and E Çiftçi. Underground hydrogen storage in a depleted gas field for seasonal storage: A numerical case study of the Tekirdağ gas field. Fuel, Volume 358, Part B, 15 February 2024, 130310. DOI: 10.1016/j.fuel.2023.130310.
  68. H.U. Rashid and O. Olorode. A continuous projection-based EDFM model for flow in fractured reservoirs. SPE Journal, 29 (01): 476–492, 2024. DOI: 10.2118/217469-PA.
2023
  1. K. Jiao, D. Han, Y. Chen, B. Bai, B. Yu, and S. Wang, The enriched-embedded discrete fracture model (nEDFM) for fluid flow in fractured porous media, Advances in Water Resources, Volume 184, 2024, 104610, DOI: 10.1016/j.advwatres.2023.104610.
  2. X. Liu, S. Geng, P. Hu, Y. Li, R. Zhu, S. Liu, Q. Ma, C. Li. Blasingame production decline curve analysis for fractured tight sand gas wells based on embedded discrete fracture model. Gas Science and Engineering, 2023. DOI: 10.1016/j.jgsce.2023.205195.
  3. V. Putra and K. Furui. Phase-field modeling of coupled thermo-hydromechanical processes for hydraulic fracturing analysis in enhanced geothermal systems. Energies, 2023. 16(24), 7942; DOI: 10.3390/en16247942.
  4. G. Cao, M. Lin, L. Zhang, L. Ji, and W. Jiang. Numerical simulation of the dynamic migration mechanism and prediction of saturation of tight sandstone oil. Science China Earth Sciences, 67, 2023. DOI: 10.1007/s11430-023-1202-1.
  5. J.O. Helland, H.A. Friis, M. Assadi, Ł. Klimkowski, and S. Nagy. Prediction of optimal production time during underground CH4 storage with cushion CO2 using reservoir simulations and artificial neural networks. Energy & Fuels, 2023
  6. E. Sarı and E Çiftçi. A numerical investigation on the utilization of a depleted natural gas field for seasonal hydrogen storage: A case study for Değirmenköy gas field. International Journal of Hydrogen Energy, 2023. DOI: 10.1016/j.ijhydene.2023.11.090
  7. D. Han, W. Zhang, K. Jiao, B. Yu, T. Li, L. Gong, S. Wang. Thermal‒hydraulic‒mechanical‒chemical coupling analysis of enhanced geothermal systems based on an embedded discrete fracture model. Natural Gas Industry B, 2023. DOI: 10.1016/j.ngib.2023.10.001.
  8. Y. Ma, Z. Kang, X. Lei, X. Chen, C. Gou, Z. Kang, and S. Wang. Coupling effect of critical properties shift and capillary pressure on confined fluids: A simulation study in tight reservoirs. Heliyon 9 (2023) e15675. DOI: 10.1016/j.heliyon.2023.e15675.
  9. A. Shojaee, S. Kord, R. Miri, and O. Mohammadzadeh. Reactive transport modeling of scale precipitation and deposition during incompatible water injection in carbonate reservoirs. Journal of Petroleum Exploration and Production Technology, 2023. DOI: 10.1007/s13202-023-01715-1.
  10. Y. Zhang, Y. Wang, J. Gao, Y. Cui, and S. Wang. Study of the influence of dynamic and static capillary forces on production in low-permeability reservoirs. Energies 2023, 16(3), 1554. DOI: 10.3390/en16031554.
  11. M. J. Dall’Aqua, E. J. R. Coutinho, E. Gildin, Z. Guo, H. Zalavadia, and S. Sankaran. Guided deep learning manifold linearization of porous media flow equations. SPE Journal, 2023. DOI: 10.2118/212204-PA.
  12. F. Meng, Y. Wang, X. Song, M. Hao, G. Qin, Y. Qi, Z. Ma, and D. Wang. Numerical simulation of fracture flow interaction based on discrete fracture model. Processes 2023, 11, 3013. DOI: 10.3390/pr11103013.
  13. S. Jia. An integrated machining learning-based workflow for CO2 sequestration optimization under geological uncertainty. International Journal of Engineering Technology and Construction, 2023, 4(2). DOI: 10.38007/IJETC.2023.040204.
  14. A. M. Hassan, E. W. Al-Shalabi, W. AlAmeri, M. S. Kamal, S. Patil, and S. M. Shakil Hussain. New insights into hybrid low salinity polymer (LSP) flooding through a coupled geochemical-based modeling approach. SPE Resevoir Evaluation & Engineering, 2023. DOI: 10.2118/210120-PA.
  15. P. Cornelissen, and J.D. Jansen. Steady-state flow through a subsurface reservoir with a displaced fault and its poro-elastic effects on fault stresses. Transport in Porous Media, 2023. DOI: 10.1007/s11242-023-02029-w.
  16. F. Nazari, S.A. Nafchi, E.V. Asbaghi, R. Farajzadeh, and V. J. Viasar. Impact of capillary pressure hysteresis and injection-withdrawal schemes on performance of underground hydrogen storage. International Journal of Hydrogen Energy. DOI: 10.1016/j.ijhydene.2023.09.136.
  17. T. Cheng, H. Yang, J. Huang, and C. Yang. Nonlinear parallel-in-time sim. ulations of multiphase flow in porous media Journal of Computational Physics, 2023. DOI: 10.1016/j.jcp.2023.112515.
  18. N. Wang, Q. Liao, H. Chang, and D. Zhang. Deep-learning-based upscaling method for geologic models via theory-guided convolutional neural network.. Computational Geosciences. DOI: 10.1007/s10596-023-10233-2.
  19. S. M. Mousavi, P. Bakhtiarimanesh, F. Enzmann, M. Kersten, and S. Sadeghnejad. Machine-learned surrogate models for efficient oil well placement under operational reservoir constraints. SPE Journal. DOI: 10.2118/217467-PA.
  20. Z. Xu, J.Chen, and J. Y. Leung. An improved dual-porosity dual-permeability modeling workflow for representing nonplanar hydraulic fractures. Gas Science and Engineering Volume 118, October 2023, 205108. DOI: 10.1016/j.jgsce.2023.205108.
  21. S. Fu, E. Chung, and L. Zhao. An efficient multiscale preconditioner for large-scale highly heterogeneous flow. SIAM Journal on Scientific Computing, 2023. DOI: 10.1137/22M1502859.
  22. Z. Xiang, R. Zhen, Y. Xu, S. Wang, X. Ao, Z. Chen, and J. Hu. A numerical pressure transient model of fractured well with complex fractures of tight gas reservoirs considering gas-water two phase by EDFM. Geoenergy Science and Engineering. DOI: 10.1016/j.geoen.2023.212286.
  23. J.S. Azevedo and J.A. Fernandes. The parameter inversion in coupled geomechanics and flow simulations using Bayesian inference. Journal of Computational Mathematics and Data Science. DOI: 10.1016/j.jcmds.2023.100083.
  24. L. Saló-Salgado, M. Haugen, K. Eikehaug, M. Fernø, J. M. Nordbotten, and R. Juanes. Direct comparison of numerical simulations and experiments of CO2 injection and migration in geologic media: Value of local data and forecasting capability. Transport in Porous Media. DOI: 10.1007/s11242-023-01972-y.
  25. B. Flemisch, J. M. Nordbotten, M. Fernø et al. The FluidFlower validation benchmark study for the storage of CO2. Transport in Porous Media. DOI: 10.1007/s11242-023-01977-7.
  26. T. Alyousuf, Y. Li, R. Krahenbuhl, and D. Grana. Three-axis borehole gravity monitoring for CO2 storage using machine learning coupled to fluid flow simulator. Geophysical Prospecting. DOI: 10.1111/1365-2478.13413.
  27. X Fang, Y Lv, C Yuan, X Zhu, J Guo, W Liu, and H Li. Effects of reservoir heterogeneity on CO2 dissolution efficiency in randomly multilayered formations. Energies. Vol. 16(13). DOI: 10.3390/en16135219.
  28. D. Lauzon and D. Marcotte. Joint hydrofacies-hydraulic conductivity modeling based on a constructive spectral algorithm constrained by transient head data. Hydrogeology Journal, 2023. DOI: 10.1007/s10040-023-02638-1.
  29. J Wang, J Dai, B Xie, J Du, J Li, H Liu, T Wang, Z Mu, and S Tian. Gas injection capacity of slotted liner and perforation completion in underground natural gas storage reservoirs. Processes. 11(5):1471. DOI: 10.3390/pr11051471.
  30. Y Yao, L Wang, K Wang, CD Adenutsi, Y Wang, and D Feng. A novel high-dimension shale gas reservoir hydraulic fracture network parameters optimization framework. Geoenergy Science and Engineering, Volume 229, October 2023, 212155. DOI: 10.1016/j.geoen.2023.212155.
  31. Q. Liao, G. Li, S. Tian, X. Song, G. Lei, X. Liu, W. Chen, and S. Patil. An efficient analytical approach for steady-state upscaling of relative permeability and capillary pressure. Energy, Volume 282, 1 November 2023, 128426. DOI: 10.1016/j.energy.2023.128426.
  32. H.M. Naghneh, M. Amani, A. Farhadi, and M.T. Isaai. Application of the closed loop industrial internet of things (IIoT)‐based control system in enhancing the oil recovery factor and the oil production. IET Cyber‐Physical Systems: Theory & Applications, 2023. DOI: 10.1049/cps2.12068.
  33. L. Xie, G. Li, Z. Wang, L. Cui, and M. Gong. Surrogate-assisted evolutionary algorithm with model and onfill criterion auto-configuration. IEEE Transactions on Evolutionary Computation, 2023. DOI: 10.1109/TEVC.2023.3291614.
  34. A. Kubeyev. Enhancing multi-physics modelling with deep learning: Predicting permeability through structural discontinuities. Engineering Applications of Artificial Intelligence, Volume 124, September 2023, 106562. DOI: 10.1016/j.engappai.2023.106562.
  35. W. Zhang, D. Han, B. Wang, Y. Chen, K. Jiao, L. Gong, and B. Yu. Thermal-hydraulic-mechanical-chemical modeling and simulation of an enhanced geothermal system based on the framework of extended finite element methods - Embedded discrete fracture model. Journal of Cleaner Production, June 2023, 137630. DOI: 10.1016/j.jclepro.2023.137630.
  36. X. Zhao, Z. Chen, B. Zhou, X. Liao, H. Wang, and B. Wang. Multiple flow mechanism-based numerical model for CO2 huff-n-puff in shale gas reservoirs with complex fractures. Energy & Fuels, 2023. DOI: 10.1021/acs.energyfuels.3c00931.
  37. J.A. Silva, L. Saló-Salgado, J. Patterson, G.R. Dasari, and R. Juanes. Assessing the viability of CO2 storage in offshore formations of the Gulf of Mexico at a scale relevant for climate-change mitigation. International Journal of Greenhouse Gas Control, Volume 126, June 2023, 103884. DOI: 10.1016/j.ijggc.2023.103884.
  38. N. Wang, H. Chang, X. Kong, M.O. Saar, and D. Zhang. Deep learning based closed-loop optimization of geothermal reservoir production. Renewable Energy, 2023. DOI: 10.1016/j.renene.2023.04.088.
  39. Z. Chen, B. Zhou, S. Zhang, D. Li, and K. Sepehrnoori. Pressure transient behaviors for horizontal wells with well interferences, complex fractures and two-phase flow. Geoenergy Science and Engineering, 2023. DOI: 10.1016/j.geoen.2023.211845.
  40. J. Cornelio, S. M. Razak, Y. Cho, H.-H. Liu, R. Vaidya, and B. Jafarpour. Transfer learning with prior data-driven models from multiple unconventional fields. SPE JournaD Cao, S Ayirala, M Han, S Salah - Geoenergy Science and Engineering, 2024l, 2023. DOI: 10.2118/214312-PA.
  41. P. Hu, S. Geng, X. Liu, C. Li, R. Zhu, and X. He. A three-dimensional numerical pressure transient analysis model for fractured horizontal wells in shale gas reservoirs. Journal of Hydrology, 2023. DOI: 10.1016/j.jhydrol.2023.129545
  42. J.G. Souza Debossam, G. de Souza, H.P. Amaral Souto, and A. P. Pires. Numerical simulation of single-phase two-component non-Darcy flow in naturally fractured reservoirs for enhanced gas recovery and carbon dioxide storage. Brazilian Journal of Chemical Engineering, 2023. DOI: 10.1007/s43153-023-00318-x.
  43. W. Xiong, L.H. Zhang, Y. Tian, L.X. Li, Y.L. Zhao, and Z.X. Chen. Phase equilibrium modeling for carbon dioxide capture and storage (CCS) fluids in brine using an electrolyte association equation of state. Chemical Engineering Science. April 2023, 118723. DOI: 10.1016/j.ces.2023.118723.
  44. G. Li, L. Xie, Z. Wang, H. Wang, and M. Gong. Evolutionary algorithm with individual-distribution search strategy and regression-classification surrogates for expensive optimization. Information Sciences, Volume 634, 2023. DOI: 10.1016/j.ins.2023.03.101.
  45. X. Zhao, Z. Chen, B. Wang, X. Liao, D. Li, and B. Zhou. A multi-medium and multi-mechanism model for CO2 injection and storage in fractured shale gas reservoirs. Fuel, Volume 345, 2023, 128167. DOI: 10.1016/j.fuel.2023.128167.
  46. L. Xin, X. Rao, X. Peng, Y. Xu, and J. Chen. Production dynamic prediction method of waterflooding reservoir based on deep convolution generative adversarial network (DC-GAN). Energy Engineering 2022, 119(5), 1905-1922. DOI: 10.32604/ee.2022.019556.
  47. C. Xiao, S. Zhang, X. Ma, T. Zhou, T. Hou, and F. Chen. Deep-learning-generalized data-space inversion and uncertainty quantification framework for accelerating geological CO2 plume migration monitoring, Geoenergy Science and Engineering, 2023, 211627. DOI: 10.1016/j.geoen.2023.211627.
  48. P.K. Gupta, B. Gharedaghloo, and J.S. Price. Multiphase flow behavior of diesel in bog, fen, and swamp peats. Journal of Contaminant Hydrology, 2023, 104162. DOI: 10.1016/j.jconhyd.2023.104162.
  49. D. Wang, F. Liu, G. Li, S. He, K. Song, and J. Zhang. Characterization and dynamic adjustment of the flow field during the late stage of waterflooding in strongly heterogeneous reservoirs. Energies 2023, 16, 831. DOI: 10.3390/en16020831.
  50. F. Jiang, Y. Guo, T. Tsuji, Y. Kato, M. Shimokawara, L. Esteban, M. Seyyedi, M. Pervukhina, M. Lebedev, and R. Kitamura. Upscaling permeability using multiscale X‐ray‐CT images with digital rock modeling and deep learning techniques. Water Resources Research, 2023. DOI: 10.1029/2022WR033267-
  51. A. Alqahtani, X. He, B. Yan, and H. Hoteit. Uncertainty analysis of CO2 storage in deep saline aquifers using machine learning and bayesian optimization. Energies, 16(4), 1684, 2023. DOI: 10.3390/en16041684
  52. M. Zeynalli, E. W. Al-Shalabi, and W. AlAmeri. An extended unified viscoelastic model for predicting polymer apparent viscosity at different shear rates. SPE Reservoir Evaluation & Engineering, 26 (01): 99–121, 2023. DOI: 10.2118/206010-PA.
  53. Z. Guo, S. Sankaran, and W. Sun. Reservoir modeling, history matching, and characterization with a reservoir graph network model. SPE Reservoir Evaluation & Engineering, 2023. DOI: 10.2118/209337-PA.
  54. M. Ahmadinia, M. Sadri, B. Nobakht, and S.M. Shariatipour. Uncertainty quantification of the CO2 storage process in the Bunter Closure 36 model. Sustainability, 2023, , 15(3), 2004. DOI: 10.3390/su15032004.
  55. Y. Wang, D. Fernàndez-Garcia, and M. W.Saaltink. Modeling reactive multi-component multi-phase flow for Geological Carbon Sequestration (GCS) with Matlab. Computers & Geosciences, Volume 172, March 2023, 105300. DOI: 10.1016/j.cageo.2023.105300.
  56. J. Zhou, H. Wang, C. Xiao, and S. Zhang. Hierarchical surrogate-assisted evolutionary algorithm for integrated multi-objective optimization of well placement and hydraulic fracture parameters in unconventional shale gas reservoir. Energies 2023, 16(1), 303. DOI: 10.3390/en16010303.
  57. C. Xiao, S. Zhang, X. Ma, T. Zhou, T. Hou, and F. Chen. Data-driven model predictive control for closed-loop refracturing design and optimization in naturally fractured shale gas reservoir under geological uncertainty. Computers & Chemical Engineering, Volume 169, January 2023, 108096. DOI: 10.1016/j.compchemeng.2022.108096.
  58. D. Losapio and A. Scotti. Local embedded discrete fracture model (LEDFM). Advances in Water Resources, Volume 171, January 2023, 104361. DOI: 10.1016/j.advwatres.2022.104361
  59. A. Dell'Oca, A. Manzoni, M. Siena, N.G. Bona, L. Moghadasi, M. Miarelli, D. Renna, and A. Guadagnini. Stochastic inverse modeling of transient laboratory-scale three-dimensional two-phase core flooding scenarios. International Journal of Heat and Mass Transfer, vol. 202, 2023, 123716. DOI: 10.1016/j.ijheatmasstransfer.2022.123716.
2022
  1. C. Li, C. Fang, Y. Huang, H. Zuo, Z. Zhang, and S. Wang. Infill well placement optimization for secondary development of waterflooding oilfields with SPSA algorithm. Frontiers in Energy Research, 2022. DOI: 10.3389/fenrg.2022.1005749.
  2. L. Saló-Salgado, J.S. Davis, and R. Juanes. Fault permeability from stochastic modeling of clay smears. Geology, 2022. DOI: 10.1130/G50739.1.
  3. J.J. Hu, C. Siefert, and R.S. Tuminaro. Smoothed aggregation for difficult stretched mesh and coefficient variation problems. Numerical Linear Algebra with Applications 10.1002/nla.2442.
  4. A. M. AlRassas, H. V. Thanh, S. Ren, R. Sun, N. L. N. Hai, and K.-K. Lee. Integrated static modelling and dynamic simulation framework for CO2 storage capacity in upper Qishn Clastics, S1A reservoir, Yemen. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8 (1), 2, DOI: 10.1007/s40948-021-00305-x.
  5. Q. Hu, D. Grana, and KA Innanen. Feasibility of seismic time-lapse monitoring of CO2 with rock physics parameterized full waveform inversion. Geophysical Journal International, 2022. DOI: 10.1093/gji/ggac462.
  6. H. Xiao, S. Geng, H. Luo, L. Song, H. Wang, and X. He. Numerical simulation of fractured horizontal well considering threshold pressure gradient, non‐darcy flow, and stress sensitivity. Energy Science & Engineering, 2022. DOI: 10.1002/ese3.1365.
  7. R. J. N. C. Junior, J. D. L. Silva, G. E. S. D. Castro, A. C. M. Almeida. Análise da eficiência no uso de software de simulação de reservatórios para a determinação da permeabilidade na produção de petróleo. Open Science Research VIII, Chapter 82, pp. 1111-1127, 2022, Editora Científica Digital. DOI: 10.37885/221211198.
  8. Y. Wang, S.F. Estefen, and M.I. Lourenço. A fully integrated reservoir/pipeline network model and its application on the evaluation of subsea water separation performance. Journal of Petroleum Science and Engineering, 2022. DOI: 10.1016/j.petrol.2022.111140.
  9. E. M. Ramos, M. R. Borges, G. A. Giraldi, B. Schulze, and F. Bernardo. Prediction of permeability of porous media using optimized convolutional neural networks. Computational Geosciences, 2022. DOI: 10.1007/s10596-022-10177-z.
  10. E. Ranaee, F. Inzoli, M. Riva, and A. Guadagnini. Sensitivity-based parameter calibration of single- and dual-continuum coreflooding simulation models Transport in Porous Media, 2022. DOI: 10.1007/s11242-022-01854-9.
  11. J.Chen, Z. Xu, and J. Y. Leung. Analysis of fracture interference – Coupling of flow and geomechanical computations with discrete fracture modeling using MRST. Journal of Petroleum Science and Engineering, October 2022, 111134. DOI: 10.1016/j.petrol.2022.111134.
  12. O. Amrollahinasab, S. Azizmohammadi, and H. Ott. Simultaneous interpretation of SCAL data with different degrees of freedom and uncertainty analysis. Computers and Geotechnics, October 2022. DOI: 10.1016/j.compgeo.2022.105074.
  13. D. Yang and C. V. Deutsch. Managing risk in well placement optimization within an expected utility framework. SPE Reservoir Evaluation & Engineering, 2022. DOI: 10.2118/212305-PA.
  14. M. K. Marvin, A. B. Ngulde, and A. M. Abubakar. Pattern effect for oil reservoir waterflooding using smart well. Applied Engineering, pp 50-56, October 2022. DOI: 10.11648.j.ae.20220602.13.
  15. L. Gutierrez-Sosa, S. Geiger, and F. Doster. Poro-mechanical coupling for flow diagnostics. Transport in Porous Media, 2022. DOI: 10.1007/s11242-022-01857-6.
  16. X. Cui,C. Jiang, B. Nassichuk, and J. Wilson. Characteristics of canister core desorption gas from unconventional reservoirs and applications to improve assessment of hydrocarbons-in-place. Minerals 2022, 12(10), 1226. DOI: 10.3390/min12101226.
  17. R. Alguliyev, R. Aliguliyev, Y. Imamverdiyev, L. Sukhostat. History matching of petroleum reservoirs using deep neural networks. Intelligent Systems with Applications, 2022, 200128. DOI: 10.1016/j.iswa.2022.200128.
  18. H. Lin, F. Zhou, C. Xiao, X. Yang, Y. Wang, Y. Zhang, and T. Hou. Data-driven inversion-free workflow of well performance forecast under uncertainty for fractured shale gas reservoirs. Journal of Energy Resource Technology, 2022. DOI: 10.1115/1.4055537.
  19. C. Xiao, G. Wang, Y. Zhang, and Y. Deng. Machine-learning-based well production prediction under geological and hydraulic fracture parameters uncertainty for unconventional shale gas reservoirs, Journal of Natural Gas Science and Engineering, Volume 106, 2022, 104762. DOI: 10.1016/j.jngse.2022.104762.
  20. C.S. Lee, F.P. Hamon, N. Castelletto, P.S. Vassilevski, and J.A. White. An aggregation-based nonlinear multigrid solver for two-phase flow and transport in porous media. Computers & Mathematics with Applications, Volume 113, 1 May 2022, Pages 282-299. DOI: 10.1016/j.camwa.2022.03.026.
  21. P.R. Punnam, A. Dutta, B. Krishnamurthy, and V.K. Surasani . Study on utilization of machine learning techniques for geological CO2 sequestration simulations. Materials Today: Proceedings, 2022. DOI: 10.1016/j.matpr.2022.08.109.
  22. J. Zhao and H Rui. Weak Galerkin coupled with conforming Finite Element method for hybrid dimensional fracture model. Journal of Computational and Applied Mathematics, 2022. DOI: 10.1016/j.cam.2022.114732.
  23. J. Li, Z. Huang, G. Li, Z. Huang, J. Dai, K. Cheng. Field test of radial jet drilling technology in a surface formation. Journal of Petroleum Science and Engineering. 2022, 110928. DOI: 10.1016/j.petrol.2022.110928.
  24. S. Xu, J. Guo, Q. Feng, G. Ren, Y. Li, S. Wang. Optimization of hydraulic fracturing treatment parameters to maximize economic benefit in tight oil. Fuel, 2022. DOI: 10.1016/j.fuel.2022.125329.
  25. W. Pan, H. Jo, J.E. Santos, C. Torres-Verdín, M.J. Pyrcz. Hierarchical machine learning workflow for conditional and multiscale deep-water reservoir modeling. AAPG Bulletin, 2022. DOI: 10.1306/05162221022.
  26. L. Wang, Y. Yao, G. Zhao, C. D. Adenutsi, W. Wang, and F. Lai. A hybrid surrogate-assisted integrated optimization of horizontal well spacing and hydraulic fracture stage placement in naturally fractured shale gas reservoir. Journal of Petroleum Science and Engineering, Volume 216, 2022, 110842. DOI: 10.1016/j.petrol.2022.110842.
  27. N. Andrianov. Upscaling of two-phase discrete fracture simulations using a convolutional neural network. Computational Geosciences, 2022. DOI: 10.1007/s10596-022-10149-3.
  28. M. Liu, D. Grana, and T. Mukerji. Randomized tensor decomposition for large-scale data assimilation problems for carbon dioxide sequestration. Mathematical Geosciences, 2022. DOI: 10.1007/s11004-022-10005-1.
  29. H. Li, H. Yu, H. Yang, T. Deng, and X. Li. Adaptive stress sensitivity analysis of fractured heterogeneous tight reservoir. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2022054.
  30. J. Cornelio, S. M. Razak, Y. Cho, H.-H. Liu, R. Vaidya, and B. Jafarpour. Residual learning to integrate neural network and physics-based models for improved production prediction in unconventional reservoirs. SPE Journal, 2022. DOI: 10.2118/210559-PA.
  31. D. Zeqiraj. Stochastic modeling of fluid flow in the simulation and quantification of fracture initiation and propagation in the oil carbonate reservoirs during water injection. Results in Control and Optimization, 2022. DOI: 10.1016/j.rico.2022.100131.
  32. M. Ashworth, A.H. Elsheik, and F. Doster. Machine learning-based multiscale constitutive modelling: Development and application to dual-porosity mass transfer. Advances in Water Resources. Volume 163, May 2022, 104166. DOI: 10.1016/j.advwatres.2022.104166.
  33. T. Chen. The impact of fracture geometries on heterogeneity and accuracy of upscaled equivalent fracture models . Lithosphere, 2022: 5070481. DOI: 10.2113/2022/5070481.
  34. Y. Wang, D. Fernàndez-Garcia, G. Sole-Mari, and P. Rodríguez-Escales. Enhanced NAPL removal and mixing with engineered injection and extraction. Water Resources Research, 2022. DOI: 10.1029/2021WR031114.
  35. S. Pannu, R. Phukan, and P. Tiwari . Experimental and simulation study of surfactant flooding using a combined surfactant system for enhanced oil recovery. Petroleum Science and Technology, 2022. DOI: 10.1080/10916466.2022.2052089.
  36. H. Amer and O. Olorode. Numerical evaluation of a novel slot-drill enhanced oil recovery technology for tight rocks. SPE Journal, 2022. DOI: 10.2118/209597-PA.
  37. J. Jiang and H. Pan. Dissipation-based nonlinear solver for fully implicit compositional simulation. SPE Journal, 2022. DOI: 10.2118/209233-PA.
  38. G. Zhao, Y. Yao, L. Wang, C. D. Adenutsi, D. Feng, and W. Wu. Optimization design of horizontal well fracture stage placement in shale gas reservoirs based on an efficient variable-fidelity surrogate model and intelligent algorithm. Energy Reports, Volume 8, pp. 3589-3599, November 2022. DOI: 10.1016/j.egyr.2022.02.228.
  39. H. Singh. Hydrogen storage in inactive horizontal shale gas wells: Techno-economic analysis for Haynesville shale. Applied Energy, Volume 313, 1 May 2022, 118862. DOI: 10.1016/j.apenergy.2022.118862.
  40. L. Zhu, G. Han, W. Ke, X. Liang, J. Tang, and J. Dai. A numerical multistage fractured horizontal well model concerning hilly-terrain well trajectory in shale reservoirs with natural fractures. Energies, Vol. 15, No. 5, 2022. DOI: 10.3390/en15051854
  41. S. Joon, I. Dawuda, E. Morgan, and S. Srinivasan. Rock physics-based data assimilation of integrated continuous active-source seismic and pressure monitoring data during geological carbon storage. SPE Journal, 2022. DOI: 10.2118/209585-PA.
  42. L. Gutierrez-Sosa, S. Geiger, and F. Doster. Fast screening tool for assessing the impact of poro-mechanics on fractured reservoirs using dual-porosity flow diagnostics. SPE Journal, 2022. DOI: 10.2118/203981-PA.
  43. J. Yu, A. Jahandideh, and B. Jafarpour. Efficient robust production optimization with reduced sampling. SPE Journal, 2022. DOI: 10.2118/209226-PA.
  44. J. Liu, L. Jiang, T. Liu, and D. Yang. Modeling tracer flowback behaviour for a fractured horizontal well in a tight oil reservoir using the embedded discrete fracture model. Journal of Petroleum Science and Engineering, 2022, 110347. DOI: 10.1016/j.petrol.2022.110347.
  45. M. Dugstad and K. Kumar. Dimensional reduction of a fractured medium for a two-phase flow. Advances in Water Resources, 2022, 104140. DOI: 10.1016/j.advwatres.2022.104140.
  46. A.A. Kazakov, P.V. Lomovitskiy, and A.N. Khlyupin. A hybrid algorithm for automated adaptation of hydrodynamic models using tracer research. Mathematical Models and Computer Simulations, Vol. 14, pp. 47–55, 2022. DOI: 10.1134/S207004822201015X
  47. Y. Wang, D. Ye, X. Zhu, Y. Yang, C. Qin, R. Chen, and Q. Liao. Spontaneous imbibition in paper-based microfluidic devices: experiments and numerical simulations. Langmuir, 2022. DOI: 10.1021/acs.langmuir.1c03403.
  48. Q. Z. Liao, L. Xue, G. Lei, X. Liu, S.Y. Sun, and S. Patil. Statistical prediction of waterflooding performance by K-means clustering and empirical modeling. Petroleum Science, 2022. DOI: 10.1016/j.petsci.2021.12.032.
  49. D. Lauzon and D. Marcotte, Statistical comparison of variogram-based inversion methods for conditioning to indirect data. Computers and Geosciences, 2022. DOI: 10.1016/j.cageo.2022.105032.
  50. T. Chen, H. Yin, Y. Zhai, L. Xu, C. Zhao, and L. Zhang. Numerical simulation of mine water inflow with an embedded discrete fracture model: application to the 16112 working face in the Binhu coal mine, China. Mine Water Environ, 2022. DOI: 10.1007/s10230-021-00820-z.
  51. D. Zeqiraj. Enhanced oil recovery (EOR) project scheduling with multiobjective of maximum net present value and minimum makesapn. Results in Engineering, 2022. DOI: 10.1016/j.rineng.2022.100339.
  52. A. Kubeyev, N. F. Inskip, T. Phillips, Y. Zhang, C. Maier, K. Bisdom, A. Busch, and F. Doster. Digital image-based stress–permeability relationships of rough fractures using numerical contact mechanics and Stokes equation. Transport in Porous Media, 2022. DOI: 10.1007/s11242-021-01719-7.
  53. E.W. Al-Shalabi, W. Alameri, and A.M. Hassan. Mechanistic modeling of hybrid low salinity polymer flooding: Role of geochemistry. Journal of Petroleum Science and Engineering, 2022, 110013. DOI: 10.1016/j.petrol.2021.110013
  54. S. B. M. Bosma, F. P. Hamon, B. T. Mallison, and H. A. Tchelepi. Smooth implicit hybrid upwinding for compositional multiphase flow in porous media. Computer Methods in Applied Mechanics and Engineering, Volume 388, 1 January 2022, 114288. DOI: 10.1016/j.cma.2021.114288.
  55. C. Xiao, S. Zhang, X. Ma, J. Jin, and T. Zhou. Model-reduced adjoint-based inversion using deep-learning: example of geological carbon sequestration modeling. Water Resources Research. DOI: 10.1029/2021WR031041.
  56. Z. Xu and J.Y. Leung. Analyzing the impacts of meshing and grid alignment in dual-porosity dual-permeability upscaling. SPE Reservoir Evaluation & Engineering, Vol. 25, No. 1, pp. 61–80, 2022. DOI: 10.2118/208573-PA.
  57. H. Liu, X. Liao, X. Zhao, L. Sun, X. Tang, L. Zhao. A high-resolution numerical well-test model for pressure transient analysis of multistage fractured horizontal wells in naturally fractured reservoirs. Journal of Petroleum Science and Engineering, Vol. 208, 2022. DOI: 10.1016/j.petrol.2021.109417.
  58. M. HosseiniMehr, J.P. Tomala, C. Vuik, M. Al Kobaisi, and H. Hajibeygi. Projection-based embedded discrete fracture model (pEDFM) for flow and heat transfer in real-field geological formations with corner-point grid geometries. Advances in Water Resources, Volume 159, January 2022, 104091. DOI: 10.1016/j.advwatres.2021.104091.
2021
  1. C. Li, S. Wang, Q. You, and C. Yu. A new measurement of anisotropic relative permeability and its application in numerical simulation. Energies 2021, 14(16), 4731. DOI: 10.3390/en14164731.
  2. G. Mamak and İ. Durgut. Effect of dispersion coefficient on polymer injection studied with random walk particle tracking method. NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2021; 10(1): 432- 438.
  3. Y.L. Su, J.L. Xu, W.D. Wang, H. Wang, and S.Y. Zhan. Relative permeability estimation of oil-water two-phase flow in shale reservoir. Petroleum Science, 2021. DOI: 10.1016/j.petsci.2021.12.024.
  4. A. Semnani, Y. Xu, and M, Ostadhassan. Joint optimization of constrained well placement and control parameters with a quantum-inspired cell-based quality gate function. Journal of Petroleum Science and Engineering, 2021, 109854. DOI: 10.1016/j.petrol.2021.109854.
  5. H. Zhang and J. J. Sheng. Surrogate-assisted multiobjective optimization of a hydraulically fractured well in a naturally fractured shale reservoir with geological uncertainty. SPE Journal, 2021. DOI: 10.2118/206755-PA.
  6. C. Gao and K.E. Gray. A coupled geomechanics and reservoir simulator with a staggered grid finite difference method. Journal of Petroleum Science and Engineering, 2021. DOI: 10.1016/j.petrol.2021.109818.
  7. M. Elizarev, A. Mukhin, and A. Khlyupin. Objective-sensitive principal component analysis for high-dimensional inverse problems. Computational Geosciences volume 25, pages2019–2031 (2021). DOI: 10.1007/s10596-021-10081-y.
  8. M. Liu, D. Grana, and L.P. de Figueiredo. Uncertainty quantification in stochastic inversion with dimensionality reduction using variational autoencoder. Geophysics, 2021. DOI: 10.1190/geo2021-0138.1.
  9. A. Tadjer, A. Hong, and R. B. Bratvold. A sequential decision and data analytics framework for maximizing value and reliability of CO2 storage monitoring. Journal of Natural Gas Science and Engineering, 2021. DOI: 10.1016/j.jngse.2021.104298.
  10. V. Y. Riga and S. B. Turuntaev. Induced seismicity modeling based on two-parameter rate-and-state law. Izv., Phys. Solid Earth, Vol. 57, pp. 627–643, 2021. DOI: 10.1134/S1069351321050153.
  11. M. Elizarev, A. Mukhin, and A. Khlyupin. Objective-sensitive principal component analysis for high-dimensional inverse problems. Computational Geosciences, 2021. DOI: 10.1007/s10596-021-10081-y.
  12. Q. Wang and R. Jiang. Comprehensive effects of polymer flooding on oil-water relative permeabilities. Journal of Energy Resources Technology, 2021. DOI: 10.1115/1.4052792.
  13. Y. Li, H. Yang, and S. Sun. Fully implicit two-phase VT-flash compositional flow simulation enhanced by multilayer nonlinear elimination. Journal of Computational Physics, 2021. DOI: 10.1016/j.jcp.2021.110790.
  14. H. Li, H. Yu, N. Cao, S. Cheng, H. Tian, and S. Di. Three-dimensional numerical simulation of multiscale fractures and multiphase flow in heterogeneous unconventional reservoirs with coupled fractal characteristics. Geofluids, 2021. DOI: 10.1155/2021/8265962
  15. A. Jiang and B. Jafarpour. Deep convolutional autoencoders for robust flow model calibration under uncertainty in geologic continuity. Water Resources Research, 2021. DOI: https://doi.org/10.1029/2021WR029754.
  16. C. Park, J. Oh, S. Jo,I. Jang, and K. S. Lee. Multi-objective optimization of CO2 sequestration in heterogeneous saline aquifers under geological uncertainty. Applied Sciences. 2021, 11(20), 9759. DOI: 10.3390/app11209759.
  17. Q. Guo. Evaluation of oil wells performance ranking in high water cut stage. Computational Geosciences, Vol. 25, pp. 1821–1835, 2021. DOI: 10.1007/s10596-021-10071-0
  18. N. Salmani, R. Fatehi, and R. Azin. A double-scale method for near-well flow in reservoir simulation. Journal of Petroleum Science and Engineering, 2021. DOI: 10.1016/j.petrol.2021.109487
  19. F. Bakharev, A. Enin, A. Groman, A. Kalyuzhnuk, S. Matveenko, Yu. Petrova, I.Starkov, and S. Tikhomirov. Velocity of viscous fingers in miscible displacement. Journal of Computational and Applied Mathematics, 2021. DOI: 10.1016/j.cam.2021.113808.
  20. D. Egya, P.W.M. Corbett, S. Geiger, J.P. Norgard, and S. Hegndal-Andersen. Calibration of naturally fractured reservoir models using integrated well-test analysis – an illustration with field data from the Barents Sea. Petroleum Geoscience, 2021. DOI: 10.1144/petgeo2020-042.
  21. H. Zhang and J.J. Sheng. Complex fracture network simulation and optimization in naturally fractured shale reservoir based on modified neural network algorithm. Journal of Natural Gas Science and Engineering, 2021. DOI: 10.1016/j.jngse.2021.104232
  22. A.V. Umavovskiy. Data-driven simulation of a two-phase flow in heterogenous porous media (in Russian). Computer Research and Modeling, 2021, vol. 13, no. 4, pp. 779-792. DOI: 10.20537/2076-7633-2021-13-4-779-792
  23. Y. Han and K. Liu. Integrated digital rock construction workflow for chemical enhanced oil recovery numerical simulation. Energy & Fuels, 2021. DOI: 10.1021/acs.energyfuels.1c02301.
  24. J. Xu, W. Wang, B. Ma, Y. Su, H. Wang, and S. Zhan. Stochastic-based liquid apparent permeability model of shale oil reservoir considering geological control. Journal of Petroleum Exploration and Production Technology, 2021. DOI: 10.1007/s13202-021-01273-4.
  25. L. Zhang, L. Xue, C. Cui, J. Qi, J. Sun, X. Zhou, Q. Dai, and K. Zhang. Monitoring the geometry morphology of complex hydraulic fracture network by using a multiobjective inversion algorithm based on decomposition. Energies,2021, 14(16), 5216. DOI: 10.3390/en14165216.
  26. J. Zeng and B. Guo. Multidimensional simulation of PFAS transport and leaching in the vadose zone: impact of surfactant-induced flow and soil heterogeneities. Advances in Water Resources, Volume 155, September 2021, 104015. DOI: 10.1016/j.advwatres.2021.104015
  27. D. Zeqiraj. Fully coupled stochastic geomechanical-geochemical-Reservoir modeling for fracture reservoirs. Results in Engineering, 2021. DOI: 10.1016/j.rineng.2021.100242
  28. M. Dugstad, K. Kumar, and Ø. Pettersen. Dimensional reduction of a fractured medium for a polymer EOR model. Computational Geosciences, 2021. DOI: 10.1007/s10596-021-10075-w.
  29. P.R. Punnam, B. Krishnamurthy, and V.K. Surasani. Investigations of structural and residual trapping phenomena during CO2 sequestration in Deccan volcanic province of the Saurashtra region, Gujarat. International Journal of Chemcial Engineering, 2021. DOI: 10.1155/2021/7762127.
  30. J. Jiang, P. Tomin, and Y. Zhou. Inexact methods for sequential fully implicit (SFI) reservoir simulation. Computational Geosciences, 2021. DOI: 10.1007/s10596-021-10072-z.
  31. G. M. S. Neto, A. Davolio, and D. J. Schiozer. Assimilating time-lapse seismic data in the presence of significant spatially correlated model errors. Journal of Petroleum Science and Engineering, 2021, 109127. DOI: 10.1016/j.petrol.2021.109127.
  32. M. M. Kida, Z. M. Sarkinbaka, A. M. Abubakar, and A. Z. Abdul. Neural network based performance evaluation of a waterflooded oil reservoir. International Journal of Recent Engineering Science, Vol. 8, Issue 3, 2021. DOI: 10.14445/23497157/IJRES-V8I3P101.
  33. L. Li, X. Guo, M. Zhou, Z. Chen, L. Zhao, and S. Wang. Numerical modeling of fluid flow in tight oil reservoirs considering complex fracturing networks and Pre-Darcy flow, Journal of Petroleum Science and Engineering, Volume 207, 2021, 109050. DOI: 10.1016/j.petrol.2021.109050.
  34. L. Luo, X.-C. Cai, and D. E. Keyes. (2021). Nonlinear preconditioning strategies for two-phase flows in porous media discretized by a fully implicit discontinuous Galerkin method. SIAM Journal on Scientific Computing, S317–S344, 2021. DOI: 10.1137/20m1344652
  35. G. B. Diaz Cortés, C. Vuik, and J.-D. Jansen. Accelerating the solution of linear systems appearing in two-phase reservoir simulation by the use of POD-based deflation methods. Computational Geosciences, 2021. DOI: 10.1007/s10596-021-10041-6.
  36. D. Hien, P.H. Giao, P.Q. Ngoc, N.M Quy, B.V. Dung, D.D. Huy, P.T Giang, and H. Long. Numerical simulation of low salinity water flooding on core samples for an oil reservoir in the Nam Con Son Basin, Vietnam. Energies, Vol. 14, 2021. 2658. DOI: 10.3390/en14092658.
  37. G. A. Padmanabha and N. Zabaras. Solving inverse problems using conditional invertible neural networks. Journal of Computational Physics, Volume 433, 15 May 2021, 110194. DOI: 10.1016/j.jcp.2021.110194.
  38. A. Ali and L. Guo. Data-driven based investigation of pressure dynamics in underground hydrocarbon reservoirs. Energy Reports, Volume 7, Supplement 2, pp. 104-110, 2021. DOI: 10.1016/j.egyr.2021.02.036
  39. B. Pouladi, N. Linde, L. Longuevergne, and O. Bour. Individual and joint inversion of head and flux data by geostatistical hydraulic tomography. Advances in Water Resources, 2021, 103960. DOI: 10.1016/j.advwatres.2021.103960
  40. V. E. Spooner, S. Geiger, and D. Arnold. Dual-porosity flow diagnostics for spontaneous imbibition in naturally fractured reservoirs. Water Resources Research. DOI: 10.1029/2020WR027775.
  41. R. March, S. Zhang, and H.H. Liu. Direct numerical simulation of density driven fingering flow: towards a model to predict the spacing between halite fingers in hydrocarbon reservoirs Journal of Petroleum Science and Engineering, 2021. DOI: 10.1016/j.petrol.2021.108929.
  42. P. Huang, L. Shen, Y. Gan, Y. Shen, D. Du, B. Yu, F. Maggi, and A. El‐Zein. Measurements of the relative permeability to CO2‐and‐brine multiphase fluid of Paaratte formation at near‐reservoir conditions. Greenhouse Gas: Science and Technology. DOI: 10.1002/ghg.2074.
  43. N. Suciu, D. Illiano, A. Prechtel, F.A. Radu. Global random walk solvers for fully coupled flow and transport in saturated/unsaturated porous media. Advances in Water Resources, 202110.1016/j.advwatres.2021.103935
  44. F. Meng, J. Li, H. Jiang, L. Zhao, L. Li, Y. Qiao, Y. Zhou, and F. Xu. Study on characteristics of waterflooding in fractured reservoirs based on discrete fracture model. Arabian Journal of Geosciences, Volume 14, 772, 2021. DOI: 10.1007/s12517-021-07102-6.
  45. M. Conjard and D. Grana. Ensemble-based seismic and production data assimilation using selection Kalman model. Mathematical Geosciences, 2021. DOI: 10.1007/s11004-021-09940-2.
  46. A. Koochakzadeh, H. Younesian-Farid, and S. Sadeghnejad . Acid pre-flushing evaluation before pH-sensitive microgel treatment in carbonate reservoirs: Experimental and numerical approach. Fuel, Volume 297, 2021, 120670. DOI: 10.1016/j.fuel.2021.120670.
  47. O. Khebzegga, A. Iranshahr, and H. Tchelepi. A nonlinear solver with phase boundary detection for compositional reservoir simulation. Transport in Porous Media, 2021. DOI: 10.1007/s11242-021-01584-4.
  48. H. Zalavadia and E. Gildin. Two-step predict and correct non-intrusive parametric model order reduction for changing well locations using a machine learning framework. Energies, 14(6), 1765, 2021. DOI: 10.3390/en14061765.
  49. P. Leary and P. Malin. Crustal reservoir flow simulation for long-range spatially-correlated random poroperm media. Journal of Energy and Power Technology, volume 3, issue 1, 2021. DOI: 10.21926/jept.2101013.
  50. A. Semnani, M. Ostadhassan, Y. Xu, M. Sharifi, and B. Liu. Joint optimization of constrained well placement and control parameters using teaching-learning based optimization and an inter-distance algorithm. Journal of Petroleum Science and Engineering, 2021. DOI: 10.1016/j.petrol.2021.108652.
  51. L. Li, X. Guo, M. Zhou, G. Xiang, N. Zhang, Y. Wang, S. Wang, A. Landjobo Pagou. The investigation of fracture networks on heat extraction performance for an enhanced geothermal system. Energies. 2021; 14(6):1635. DOI: 10.3390/en14061635.
  52. A. Tadjer and R.B. Bratvold. Managing uncertainty in geological CO2 storage using Bayesian evidential learning. Energies, 14(6):1667, 2021. DOI: 10.3390/en14061557.
  53. Y. D. Wang, T. Chung, A. Rabbani, R. T. Armstrong, and P. Mostaghimi. Fast direct flow simulation in porous media by coupling with pore network and Laplace models. Advances in Water Resources. DOI: 10.1016/j.advwatres.2021.103883.
  54. A. Farasat, H. Younesian-Farid, S. Sadeghnejad. Conformance control study of preformed particle gels (PPGs) in mature waterflooded reservoirs: numerical and experimental investigations. Journal of Petroleum Science and Engineering, 2021. DOI: 10.1016/j.petrol.2021.108575.
  55. B. Wang and C. Fidelibus. An open-source code for fluid flow simulations in unconventional fractured reservoirs. Geosciences, 2021. DOI: 10.3390/geosciences11020106.
  56. C. Xiao, Y. Deng, and G. Wang. Deep‐learning‐based adjoint state method: methodology and preliminary application to inverse modeling. Water Resources Research. Volume 57, Issue 2, February 2021. DOI: 10.1029/2020WR027400.
  57. K. Zhang, J. Zhang, Xi. Ma, C. Yao, L. Zhang, Y. Yang, J. Wang, J. Yao, and H. Zhao. History matching of naturally fractured reservoirs using a deep sparse autoencoder. SPE Journal, 2021. DOI: 10.2118/205340-PA.
  58. Z. Jiang, P. Tahmasebi, and Z. Mao. Deep residual U-net convolution neural networks with autoregressive strategy for fluid flow predictions in large-scale geosystems. Advances in Water Resources, 2021. DOI: 10.1016/j.advwatres.2021.103878.
  59. J. Zhang, S. Cheng, S. Di, Z. Gao, R. Yang, and P. Cao. A two-phase numerical model of well test analysis to characterize formation damage in near-well regions of injection wells. Geofluids, 2021. DOI: 10.1155/2021/6693965.
  60. G. M. Silva Neto, R. V. Soares, G. Evensen, A. Davolio, and D. J. Schiozer. Subspace ensemble randomized maximum likelihood with local analysis for time-lapse-seismic-data assimilation. SPE Journal, 2021. DOI: 10.2118/205029-PA .
  61. D. Landa-Marbán, S. Tveit, K. Kumar, and S.E. Gasda. Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, Volume 106, March 2021, 103256. DOI: 10.1016/j.ijggc.2021.103256
  62. M. K. Loe, D. Grana, and H. Tjelmeland. Geophysics-based fluid-facies predictions using ensemble updating of binary state vectors. Mathematical Geosciences, 2021. DOI: 10.1007/s11004-021-09922-4.
  63. J. C. Teixeira, L. J. N. Guimarães, and D. K. E. Carvalho. Streamline-based simulation in highly heterogeneous and anisotropic petroleum reservoirs using a non-orthodox MPFA method and an adaptive timestep strategy with unstructured meshes. Journal of Petroleum Science and Engineering, 2021,108369, DOI: 10.1016/j.petrol.2021.108369.
  64. Y. Ma, S. Wang, Z. Kang, and L. Zhao. A compositional numerical study in hydraulic fractured tight reservoir: Considering capillary pressure in phase behavior calculation. Journal of Petroleum Science and Engineering, Volume 196, January 2021, 108071. DOI: 10.1016/j.petrol.2020.108071.
  65. S. Anyosa, S. Bunting, J. Eidsvik, A. Romdhane, and P. Bergmo. Assessing the value of seismic monitoring of CO2 storage using simulations and statistical analysis. International Journal of Greenhouse Gas Control, Volume 105, February 2021, 103219. DOI: 10.1016/j.ijggc.2020.103219.
2020
  1. A. Jiang and B. Jafarpour. Inverting subsurface flow data for geologic scenarios selection with convolutional neural networks. Advances in Water Resources, 2020, 103840. DOI: 10.1016/j.advwatres.2020.103840.
  2. J. Abbasi, M. Ghaedi, and M. Riazi. A multiscale study on the effects of dynamic capillary pressure in two-phase flow in porous media. Korean Journal of Chemical Engineering, vol. 37, pp. 2122-2135, 2020 DOI: 10.1007/s11814-020-0645-8.
  3. M.H .Rammay, A.H. Elsheikh, and Y. Chen. Flexible iterative ensemble smoother for calibration of perfect and imperfect models. Computational Geosciences, 2020, DOI: 10.1007/s10596-020-10008-z.
  4. T Chen. Equivalent permeability distribution for fractured porous rocks: the influence of fracture network properties. Geofluids, 6751349, 2020. DOI: 10.1155/2020/6751349.
  5. H. Zhang and J.J. Sheng. An efficient embedded discrete fracture model based on the unstructured quadrangular grid. Journal of Natural Gas Science and Engineering, 2020DOI: 10.1016/j.jngse.2020.103710.
  6. N. Andrianov and H.M. Nick. Machine learning of dual porosity model closures from discrete fracture simulations. Advances in Water Resources, 2020. DOI: 10.1016/j.advwatres.2020.103810.
  7. H. Liu, X. Liao, X. Tang, Z. Chen, X. Zhao, and J. Zou. A well test model based on embedded discrete-fracture method for pressure-transient analysis of fractured wells with complex fracture networks. Journal of Petroleum Science and Engineering, 2020. 10.1016/j.petrol.2020.108042.
  8. M. Ahmadinia, S.M. Shariatipour, O. Andersen, B. Nobakht. Quantitative evaluation of the joint effect of uncertain parameters in CO2 storage in the Sleipner project, using data-driven models. International Journal of Greenhouse Gas Control Volume 103, December 2020, 103180. DOI: 10.1016/j.ijggc.2020.103180.
  9. A. Khanal and R. Weijermars. Comparison of flow solutions for naturally fractured reservoirs using complex analysis methods (CAM) and embedded discrete fracture models (EDFM): Fundamental design differences and improved scaling method. Geofluids, Vol. 2020, Article ID 8838540, 2020. DOI: 10.1155/2020/8838540.
  10. D. Illiano, I.S. Pop, F.A. Radu. Iterative schemes for surfactant transport in porous media. Computational Geosciences, 2020. DOI: 10.1007/s10596-020-09949-2.
  11. Adil Sbai and A. Larabi. On solving groundwater flow and transport models with algebraic multigrid preconditioning. Groundwater, 2020. DOI: 10.1111/gwat.13016.
  12. T. Chen. Equivalent permeability distribution for fractured porous rocks: correlating fracture aperture and length. Geofluids. 2020 |Article ID 8834666. DOI: 10.1155/2020/8834666.
  13. C. Xiao, O. Leeuwenburgh, H.X. Lin, and A. Heemink. Efficient estimation of space varying parameters in numerical models using non-intrusive subdomain reduced order modeling. Journal of Computational Physics, 2020. DOI: 10.1016/j.jcp.2020.109867.
  14. L. Deng and Y. Pan. Data-driven proxy model for waterflood performance prediction and optimization using Echo State Network with Teacher Forcing in mature fields. Journal of Petroleum Science and Engineering, 2020. DOI: 10.1016/j.petrol.2020.107981.
  15. D. Grana, M. Liu, and M. Ayani. Prediction of CO2 saturation spatial distribution using geostatistical inversion of time-lapse geophysical data. IEEE Transactions on Geoscience and Remote Sensing, 2020. DOI: 10.1109/TGRS.2020.3018910.
  16. M. Ashworth and F. Doster. Anisotropic dual-continuum representations for multiscale poroelastic materials: Development and numerical modelling. Numerical and Analytical Methods in Geomechanics, 2020. DOI: 10.1002/nag.3140, 2020.
  17. M. A. de Almeida, A. T. S. Souza, V. F. Dornelas, and A.P. Meneguelo. Analysis of the effectiveness of the alternating water and gas injection method (WAG). International Journal of Advanced Engineering Research and Science (IJAERS), Vol. 7, Issue 8, August 2020. DOI: 10.22161/ijaers.78.7
  18. X. Ning, Y. Feng, and B. Wang. Numerical simulation of channel fracturing technology in developing shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2020, 103515. DOI: 10.1016/j.jngse.2020.103515.
  19. D.U. de Brito and L.J. Durlofsky. Field development optimization using a sequence of surrogate treatments. Computational Geosciences, 2020. DOI: 10.1007/s10596-020-09985-y.
  20. T. Chung, Y. Da Wang, R. T. Armstrong, and P. Mostaghimi. CNN-PFVS: Integrating neural network and finite volume models to accelerate flow simulation on pore space images. Transport in Porous Media, 2020. DOI: 10.1007/s11242-020-01466-1.
  21. M. Ahmadinia and S.M. Shariatipour. Analysing the role of caprock morphology on history matching of Sleipner CO2 plume using an optimisation method. Greenhouse Gases: Science and Technology, 2020. DOI: 10.1002/ghg.2027.
  22. H. Klie and H. Florez. Data-driven prediction of unconventional shale-reservoir dynamics. SPE Journal, 2020DOI: 10.2118/193904-PA.
  23. F. Hourfar, L. Khoshnevisan, B. Moshiri, K. Salahshoor, and A. Elkamel. Mixed H∞/passivity controller design through LMI approach applicable for waterflooding optimization in the presence of geological uncertainty. Computers & Chemical Engineering, Volume 142, 2020, 107055. DOI: 10.1016/j.compchemeng.2020.107055.
  24. A.V. Umanovsky. Adversarial convolutional neural networks as a heuristic model of the two-phase filtration process in a porous medium. Computational Continuum Mechanics, 2020. (In Russian). DOI: 10.7242/1999-6691/2020.13.2.18.
  25. M. Ghasemi, S. Tofigh, A. Parsa, A. Najafi-Marghmaleki. Numerical simulation of impact of biopolymer production and microbial competition between species on performance of MEOR process. Journal of Petroleum Science and Engineering, 2020, 107643. DOI: 10.1016/j.petrol.2020.107643.
  26. G.P. Oliveira, M.D. Santos, and E. Roemers-Oliveira. Well placement subclustering within partially oil-saturated flow units. Journal of Petroleum Science and Engineering, Volume 196, 2021, 107730. DOI: 10.1016/j.petrol.2020.107730.
  27. D.L.Y Wong, F. Doster, S. Geiger, E. Francot, and F. Gouth. Fluid flow characterization framework for naturally fractured reservoirs using small-scale fully explicit models. Transport in Porous Media, 2020 DOI: 10.1007/s11242-020-01451-8.
  28. O. Olorode. B. Wang. and H. U. Rashid. Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs. SPE Journal, 2020. DOI: 10.2118/201243-PA.
  29. D. Landa-Marbán, G. Bødtker, B.F. Vik, P. Pettersson, I.S. Pop, K. Kumar, and F.A. Radu. Mathematical modeling, laboratory experiments, and sensitivity analysis of bioplug technology at Darcy scale. SPE Journal, 2020. DOI: 10.2118/201247-PA.
  30. C. Xiao and L. Tian. Surrogate‐based joint estimation of subsurface geological and relative permeability parameters for high‐dimensional inverse problem by use of smooth local parameterization. Water Resources Research, Vol. 56, Issue 7, 2020, e2019WR0253662020. DOI: 10.1029/2019WR025366.
  31. M. Ayani and D. Grana. Statistical rock physics inversion of elastic and electrical properties for CO2 sequestration studies. Geophysical Journal International, 2020. DOI: 10.1093/gji/ggaa346.
  32. A.M Kassa, K. Kumar, S.E. Gasda, and F.A. Radu. Implicit linearization method for non-standard two-phase flow in porous media. Numerical Methods in Fluids, 2020. DOI: 10.1002/fld.4891.
  33. C. Li, J. Ye, J. Yang, and J. Zhou. Performance evaluation of multiple fractured horizontal wells in shale gas reservoirs. Earth Science & Engineering, 2020. DOI: 10.1002/ese3.773.
  34. M. Ayani, D. Grana, and M. Liu. Stochastic inversion method of time-lapse controlled source electromagnetic data for CO2 plume monitoring. International Journal of Greenhouse Gas Control, Volume 100, September 2020, 103098. DOI: 10.1016/j.ijggc.2020.103098.
  35. B. Callow, I. Falcon-Suarez, H. Marin-Moreno, J.M. Bull, and S. Ahmed. Optimal X-ray micro-CT image based methods for porosity and permeability quantification in heterogeneous sandstones. Geophysical Journal International, ggaa321, 2020. DOI: 10.1093/gji/ggaa321.
  36. X. Ma, K. Zhang, C. Yao, L. Zhang, J. Wang, Y. Yang, and J. Yao. Multiscale-network structure inversion of fractured media based on a hierarchical-parameterization and data-driven evolutionary-optimization method. SPE Journal, 2020. DOi: 10.2118/201237-PA
  37. L. Pasquinelli, M. Felder, M.L. Gulbrandsen, T.M. Hansen, J.-S. Jeon, N. Molenaar, K. Mosegaard, and I.L. Fabricius. The feasibility of high-temperature aquifer thermal energy storage in Denmark: the Gassum Formation in the Stenlille structure. Bulletin of the Geological Society of Denmark, Vol. 68, pp. 133–154, 2020. DOI: 10.37570/bgsd-2020-68-06.
  38. S. Parvin, M. Masoudi, A. Sundal, and R. Miri. Continuum scale modelling of salt precipitation in the context of CO2 storage in saline aquifers with MRST compositional. International Journal of Greenhouse Gas Control 99:103075. DOI: 10.1016/j.ijggc.2020.103075.
  39. M. Liu and D. Grana. Petrophysical characterization of deep saline aquifers for CO2 storage using ensemble smoother and deep convolutional autoencoder, Advances in Water Resources, 2020, 103634. DOI: 10.1016/j.advwatres.2020.103634.
  40. T Bai and P Tahmasebi. Hybrid geological modeling: Combining machine learning and multiple-point statistics. Computers & Geosciences, 2020. DOI: 10.1016/j.cageo.2020.104519.
  41. Z. Wang, X. Liu, H. Tang, Z. Lv, and Q. Liu. Reservoir inverse modeling by ensemble smoother with multiple data assimilation for seismic and production data. Computer Modeling in Engineering & Sciences CMES, vol.123, no.2, pp.873-893, 2020 CMES. DOI: 10.32604/cmes.2020.08993.
  42. M. H. Rammay, A. H. Elsheikh, and Y. Chen. Robust algorithms for history matching of imperfect subsurface models. SPE Journal, 2020 DOI: 10.2118/193838-PA
  43. A. S Grema, A. S Kolo, U. H. Taura, and M. B Grema. Evaluation of intelligent wells performance in a five-spot arrangement. FUOYE Journal of Engineering and Technology, Volume 5, Issue 1, March 2020.
  44. H. Liu, X. Zhao, X. Tang, B. Peng, J. Zou, and X. Zhang. A discrete fracture-matrix model for pressure transient analysis in multistage fractured horizontal wells with discretely distributed natural fractures. Journal of Petroleum Science and Engineering, Volume 192, 2020, 107275. DOI: 10.1016/j.petrol.2020.107275.
  45. N. Salmani, R. Fatehi and R. Azin. On the liquid condensate vertical migration near the production wells of gas-condensate reservoirs. Engineering Science and Technology, an International Journal, 2020. DOI: 10.1016/j.jestch.2020.03.006.
  46. K. Zhang, F. Du, and B. Nojabaei. Effect of pore size heterogeneity on hydrocarbon fluid distribution, transport, and primary and secondary recovery in nano-porous media. Energies 2020, 13, 1680. DOI: 10.3390/en13071680.
  47. Y. Sun, Z. Liu, and Y. Hu. Adjoint based state estimation of compressible flow in porous media. Petroleum, 2020. DOI: 10.1016/j.petlm.2020.03.004.
  48. D. Wong, F. Doster, S. Geiger, and A. Kamp. Partitioning thresholds in hybrid implicit‐explicit representations of naturally fractured reservoirs. Water Resources Research, 56, 2020. DOI: 10.1029/2019WR025774
  49. S. Sanguinito, H. Singh, E. M. Myshakin, et al. Methodology for estimating the prospective CO2 storage resource of residual oil zones at the national and regional scale, International Journal of Greenhouse Gas Control, Volume 96, 2020, 103006. DOI: 10.1016/j.ijggc.2020.103006
  50. A.A. Lukyanov and K. Vuik. A stable SPH discretization of the elliptic operator with heterogeneous coefficients. Journal of Computational and Applied Mathematics Volume 374, 15 August 2020, 112745. DOI: 10.1016/j.cam.2020.112745.
  51. A. D. Obembe. A fractional diffusion model for single-well simulation in geological media. Journal of Petroleum Science and Engineering,10 March 2020, 107162. DOI: 10.1016/j.petrol.2020.107162
  52. E. I. Epelle and D. I.Gerogiorgis. Adjoint-based well placement optimisation for enhanced oil recovery (EOR) under geological uncertainty: From seismic to production. Journal of Petroleum Science and Engineering, 20 February 2020, 107091 DOI: 10.1016/j.petrol.2020.107091
  53. L. Luo, L. Liu, X.-C. Cai, and D. E.Keyes. Fully implicit hybrid two-level domain decomposition algorithms for two-phase flows in porous media on 3D unstructured grids. Journal of Computational Physics, 2020, 109312. DOI: 10.1016/j.jcp.2020.109312.
  54. E.L.F. Fortaleza, E.P.B Neto, and M.E.R. Miranda. Production optimization using a modified net present value. Computational Geosciences, 2020. DOI: 10.1007/s10596-019-09927-3.
  55. L. Liu, Z. Huang, J. Yao, Y. Di, and Y.S. Wu. An efficient hybrid model for 3D complex fractured vuggy reservoir simulation. SPE Journal, 2020 DOI: 10.2118/199899-PA.
  56. Q. Liao, G. Lei, Z. Wei, D. Zhang, and S. Patil. Efficient analytical upscaling method for elliptic equations in three-dimensional heterogeneous anisotropic media. Journal of Hydrology, 2020 DOI: 10.1016/j.jhydrol.2020.124560.
  57. B. Guo J. Zeng, and M. L. Brusseau. A mathematical model for the release, transport, and retention of per‐ and polyfluoroalkyl substances (PFAS) in the vadose zone. Water Resources Research, 2020. DOI: 10.1029/2019WR026667.
  58. A. Jahandideh and B. Jafarpour. Closed-loop stochastic oilfield optimization for hedging against geologic, development, and operation uncertainty. Computational Geosciences, 2020. DOI: 10.1007/s10596-019-09902-y.
  59. R. Weijermars, A. Khanal, and L. Zuo. Fast models of hydrocarbon migration paths and pressure depletion based on complex analysis methods (CAM): Mini-review and verification. Fluids, 5, 7, 2020. DOI: 10.3390/fluids5010007.
  60. S. Ayirala, A. Alghamdi, A. Gmira, D. K. Cha, M. A. Alsaud, and A. Yousef. Linking pore scale mechanisms with macroscopic to core scale effects in controlled ionic composition low salinity waterflooding processes. Fuel, Volume 264, 15 March 2020, 116798, DOI: 10.1016/j.fuel.2019.116798.
  61. L. Zhao, H. Jiang, H. Wang, H. Yang, F. Sun, and J. Li. Representation of a new physics-based non-Darcy equation for low-velocity flow in tight reservoirs. Journal of Petroleum Science and Engineering, Volume 184, January 2020, 106518. DOI: 10.1016/j.petrol.2019.106518.
2019
  1. M. Ashworth and F. Doster. Foundations and their practical implications for the constitutive coefficients of poromechanical dual-continuum models. Transp Porous Media. 2019. DOI: 10.1007/s11242-019-01335-6.
  2. K. Zhang, B. Nojabaei, K. Ahmadi, and R. T. Johns. Effect of gas/oil capillary pressure on minimum miscibility pressure for tight reservoirs. SPE Journal, 2019. DOI: 10.2118/199354-PA.
  3. D. Pedretti and M. Bianchi. Preliminary results from the use of entrograms to describe transport in fractured media. Acque Sotterranee-Italian Journal of Groundwater, AS31-421: 07 - 11, 2019. DOI: 10.7343/as-2019-421.
  4. U. Hassan, J.A. Ajienka, and A.D.I. Sulaiman. Evaluating the performance of ultrasound energy on improved oil recovery using MATLAB reservoir simulation toolbox (MRST). Journal of Petroleum and Gas Engineering. Vol.10(4), pp. 85-100, July 2019. DOI: 10.5897/JPGE2019.0311.
  5. E. Ahmed, S. A. Hassan, C. Japhet, M. Kern, M. Vohralik. A posteriori error estimates and stopping criteria for space-time domain decomposition for two-phase flow between different rock types. SMAI journal of computational mathematics, Volume 5 (2019), p. 195-227. DOI : 10.5802/smai-jcm.47.
  6. Q. Wang, R. Jiang, Y. Cui, and J. Yuan. Pre-Darcy flow behavior of CO2 Huff-n-Puff development in Fuyu tight formation: Experiment and numerical evaluation. Journal of Petroleum Science and Engineering 186 (2020) 106773. DOI: 10.1016/j.petrol.2019.106773 .
  7. C. Xiao, L. Tian, L. Zhang, G. Wang, and Y. Deng. Distributed Gauss-Newton optimization with smooth local parameterization for large-scale history-matching problems. SPE Journal, 2019. DOI: 10.2118/198913-PA.
  8. D. Lauzon and D. Marcotte. Calibration of random fields by a sequential spectral turning bands method. Computers & Geosciences, 2019. DOI: 10.1016/j.cageo.2019.104390.
  9. G.P. Oliveira, M.D. Santos, and W.L. Roque. Constrained clustering approaches to identify hydraulic flow units in petroleum reservoirs. Journal of Petroleum Science and Engineering, 2019. DOI: 10.1016/j.petrol.2019.106732.
  10. H.R.N.B. Mfoubat, and E.I. Zaky. Optimization of waterflooding performance by using finite volume-based flow diagnostics simulation. Journal of Petroleum Exploration and Production Technology DOI: 10.1007/s13202-019-00803-5.
  11. A. Nissan and B. Berkowitz. Reactive transport in heterogeneous porous media under different Péclet numbers. Water Resources Research, 2019. DOI: 10.1029/2019WR025585
  12. G.P. Oliveira, E.A. Araújo, M.D. Santos, and W.L.Roque. Non-uniform injector/producer well pattern designs induced by morphology and anisotropy of flow units. Journal of Petroleum Science and Engineering, 2019. DOI: 10.1016/j.petrol.2019.106680
  13. M Liu, and D Grana. Time-lapse seismic history matching with iterative ensemble smoother and deep convolutional autoencoder. Geophysics, 2019. DOI: 10.1190/geo2019-0019.1
  14. E. Ahmed. Splitting-based domain decomposition methods for two-phase flow with different rock types. Advances in Water Resources, 2019. DOI: 10.1016/j.advwatres.2019.103431
  15. M. Rongved and P. Cerasi. Simulation of stress hysteresis effect on permeability increase risk along a fault. Energies 2019, 12(18), 3458. DOI: 10.3390/en12183458.
  16. Y.D. Wang, T. Chung, R.T. Armstrong, J. McClure, T. Ramstad, and P. Mostaghimi. Accelerated computation of relative permeability by coupled morphological and direct multiphase flow simulation. Journal of Computational Physics, 18 October 2019, 108966. DOI: 10.1016/j.jcp.2019.108966.
  17. T. Chung, Y.D. Wang, R.T. Armstrong, and P.Mostaghimi. Voxels agglomeration for fast estimation of permeability of micro-CT images. Journal of Petroleum Science and Engineering, October 2019. DOI: 10.1016/j.petrol.2019.106577.
  18. D. Batista. Mesh-independent streamline tracing. Journal of Computational Physics, 2019. DOI: 10.1016/j.jcp.2019.108967.
  19. L. Zhao, H. Jiang, H. Wang, H.Yang, F. Sun, and J. Li. Representation of a new physics-based non-Darcy equation for low-velocity flow in tight reservoirs. Journal of Petroleum Science and Engineering, 2019. DOI: 10.1016/j.petrol.2019.106518.
  20. K. Nunna and M. J. King. Dynamic diffuse-source upscaling in high-contrast systems. SPE Journal, 2019. DOI: 10.2118/182689-PA.
  21. L.-M. Zhang. J. Qi, K. Zhang, L.-X. Li, X.-M. Zhang, H.-Y. Wu, M. T. Chipecane, and J. Yao. Calibrate complex fracture model for subsurface flow based on Bayesian formulation. Petroleum Science, 2019. DOI: 10.1007/s12182-019-00357-5.
  22. A. S. Grema and Y. Cao. Dynamic self-optimizing control for uncertain oil reservoir waterflooding processes. IEEE Transactions on Control Systems Technology, 2019. DOI: 10.1109/TCST.2019.2934072.
  23. M. Jesmani, B. Jafarpour, M. C. Bellout, B. Foss. A reduced random sampling strategy for fast robust well placement optimization, Journal of Petroleum Science and Engineering, 2019, 106414. DOI: 10.1016/j.petrol.2019.106414.
  24. Y. Sun, Z. Liu, and X. Dong. Rate optimization of fractional flow reservoir model based on the continuous adjoint method. Journal of Petroleum Science and Engineering, 2019. DOI: 10.1016/j.petrol.2019.106346.
  25. K. Nunna, C.-H. Liu, and M. J. King. Application of diffuse source functions for improved flow upscaling. Computational Geosciences, 2019. DOI: 10.1007/s10596-019-09868-x.
  26. G. Dutta, T. Mukerji, and J. Eidsvik. Value of information of time-lapse seismic data by simulation-regression: comparison with double-loop Monte Carlo. Computational Geosciences, 2019. DOI: 10.1007/s10596-019-09864-1.
  27. H. Yang, S. Sun, Y., and C. Yang. Parallel reservoir simulators for fully implicit complementarity formulation of multicomponent compressible flows. Computer Physics Communications, 2019. DOI: 10.1016/j.cpc.2019.07.011.
  28. Y. Hu, R. T. Armstrong, I.Shikhov, T. T. Hung, B. Lee, and P. Mostaghimi. Unsteady-state coreflooding monitored by positron emission tomography and X-ray computed tomography. SPE Journal, 2019. DOI: 10.2118/195701-PA.
  29. H. Singh. Machine learning for surveillance of fluid leakage from reservoir using only injection rates and bottomhole pressures. Journal of Natural Gas Science and Engineering, Vol. 69, September 2019, 102933. DOI: 10.1016/j.jngse.2019.102933.
  30. H. Yang, S. Sun, Y. Li, and C. Yang. A fully implicit constraint-preserving simulator for the black oil model of petroleum reservoirs. Journal of Computational Physics, Vol. 396, pp. 347-363, 2019. DOI: 10.1016/j.jcp.2019.05.038
  31. W. Zhang and M. Al Kobaisi. Cell-centered nonlinear finite-volume methods with improved robustness. SPE Journal, 2019. DOI: 10.2118/195694-PA
  32. V. Spooner, S. Geiger, and D. Arnold. Flow diagnostics for naturally fractured reservoirs. Petroleum Geoscience, 1 July 2019. DOI: 10.1144/petgeo2018-136
  33. H. Florez and E. Gildin. Global/local model order reduction in coupled flow and linear thermal-poroelasticity. Computational Geosciences, June 2019. DOI: 10.1007/s10596-019-09834-7
  34. M. A. Abdullah, A. Panda, S. Gupta, S. Joshi, A. Singh, and N. Rao. Multi-scale method for modelling and simulation of two-phase flow in reservoir using MRST. Petroleum & Coal, Vol. 61 Issue 3, pp. 546-558, 2019.
  35. X. Zhao and B. Jha. Role of well operations and multiphase geomechanics in controlling fault stability during CO2 storage and enhanced oil recovery. JGR Solid Earth, June 2019. 10.1029/2019JB017298
  36. S. Xu, Q. Feng, S. Wang, and Y. Li. A 3D multi-mechanistic model for predicting shale gas permeability. Journal of Natural Gas Science and Engineering, Vol. 68, 2019. DOI: 10.1016/j.jngse.2019.102913
  37. Y. Zhao, H. Jiang, S. Rahman, Y. Yuan, L. Zhao, J. Li, J. Ge, J. Li. Three-dimensional representation of discrete fracture matrix model for fractured reservoirs. Journal of Petroleum Science and Engineering, Vol. 180, pp. 886-900, 2019. DOI: 10.1016/j.petrol.2019.06.015
  38. A. Jahandideh and B. Jafarpour. Stochastic oilfield optimization under uncertain future development plans. SPE Journal, 2019. DOI: 10.2118/190139-PA
  39. Y. Mehmani and H.A. Tchelepi. Multiscale formulation of two-phase flow at the pore scale. Journal of Computational Physics. Volume 389, pp. 164-188, 2019. DOI:10.1016/j.jcp.2019.03.035
  40. X. Lang and D. Grana. Rock physics modelling and inversion for saturation‐pressure changes in time‐lapse seismic studies. Geophysical Prospecting, Vol. 67, Issue 7, pp. 1912-1928, 2019. DOI: 10.1111/1365-2478.12797
  41. L. Zhang, C. Cui, Y. Wang, K. Zhang, Z. Sun, and J. Yao. Reducing fracture prediction uncertainty based on time-lapse seismic (4D) and deterministic inversion algorithm. International Journal for Uncertainty Quantification, Vol. 9, No. 2, pp. 187-204, 2019. DOI: 10.1615/Int.J.UncertaintyQuantification.2019027680
  42. L. Zhang, C. Cui, X. Ma, Z. Sun, F. Liu, K. Zhang. A fractal discrete fracture network model for history matching of naturally fractured reservoirs. Fractals, Vol. 27, No. 01, 1940008, 2019. DOI: 10.1142/S0218348X19400085
  43. Q. Liao, G. Lei, D. Zhang, and S. Patil. Analytical solution for upscaling hydraulic conductivity in anisotropic heterogeneous formations. Advances in Water Resources, Volume 128, pp. 97-116, 2019. DOI: 10.1016/j.advwatres.2019.04.011
  44. B. Sousedík. On adaptive BDDC for the flow in heterogeneous porous media. Applications of Mathematics, Vol. 64, No. 3, pp. 309-334, 2019. DOI: 10.21136/AM.2019.0222-18
  45. M. Hosseini and M. A. Riahi. Using input-adaptive dictionaries trained by the method of optimal directions to estimate the permeability model of a reservoir. Journal of Applied Geophysics, Volume 165, pp. 16-28, 2019. DOI: 10.1016/j.jappgeo.2019.04.006
  46. Y. D. Wang, T. Chung, R. T. Armstrong, J. E. McClure, and P. Mostaghimi. Computations of permeability of large rock images by dual grid domain decomposition. Advances in Water Resources, Volume 126, pp. 1-14, 2019. DOI: 10.1016/j.advwatres.2019.02.002
  47. E.G.D. Barros, P.M.J. Van den Hof, and J.D. Jansen. Informed production optimization in hydrocarbon reservoirs. Optimization and Engineering, 2019. DOI: 10.1007/s11081-019-09432-7
  48. C. S. Hemmingsen. S. L. Glimberg, N. Quadrio, C. Völcker, K. K. Nielsen, J. H. Walther, M. lByrne, and A. P.Engsig-Karup. Multiphase coupling of a reservoir simulator and computational fluid dynamics for accurate near-well flow. J. Petrol. Sci. Eng.,  Vol. 178, pp. 517-527, 2019. DOI: 10.1016/j.petrol.2019.03.063
  49. T. Chung, Y. D. Wang, R. T. Armstrong, and P. Mostaghimi. Approximating permeability of microcomputed-tomography images using elliptic flow equations. SPE Journal, Vol. 24, Issue 3, pp. 1154-1163, 2019. DOI: 10.2118/191379-PA
  50. T. L. Silva, A. Codas, M. Stanko, E. Camponogara, and B. Foss. Network-constrained production optimization by means of multiple shooting. SPE Reservoir Evaluation & Engineering, Vol. 22, Issue 2, pp. 709-733, 2019. DOI: 10.2118/194504-PA
  51. M. H. Rammay, A. H. Elsheikh, and Y. Chen. Quantification of prediction uncertainty using imperfect subsurface models with model error estimation. J. Hydrol., Vol. 576, pp. 764-783, 2019. DOI: 10.1016/j.jhydrol.2019.02.056
  52. D. Egya, S. Geiger, and P.W.M. Corbett. Pressure-transient responses of fractures with variable conductivity and asymmetric well location. SPE Reservoir Evaluation & Engineering, Vol. 22, Issue 2, pp. 745-755, 2019. DOI: 10.2118/190884-PA
  53. E.L.F. Fortaleza, J.O.A. Limaverde Filho, G.S.V. Gontijo, É. L. Albuquerque, R.D.P. Simões, M.M. Soares, M.E.R. Miranda, and G.C. Abade. Analytical, numerical and experimental study of gas coning on horizontal wells. J Braz. Soc. Mech. Sci. Eng. (2019) 41: 141. DOI: 10.1007/s40430-019-1643-9
  54. Y. Zhang, Z. Xue, H. Park, J. Shi, T. Kiyama, X. Lei, and Y. Liang. Tracking CO2 plumes in clay‐rich rock by distributed fiber optic strain sensing (DFOSS): a laboratory demonstration. Water Resources Research, Vol. 55, Issue 1, pp. 856-767, 2019. DOI: 10.1029/2018WR023415
  55. E. A. Spirina, K. A. Potashev, and A. B. Mazo. Evaluation of the reliability of the averaging over the reservoir thickness for the model with a fixed streamtube. J. Phys.: Conf. Ser. 1158, 4. DOI: 10.1088/1742-6596/1158/4/042024
  56. M. A. E. Kokubun, F. A. Radu, E. Keilegavlen, K. Kumar, and K. Spildo. Transport of polymer particles in a oil-water flow in porous media: enhancing oil recovery. Transport in Porous Media, January 2019, Volume 126, Issue 2, pp 501 -519. DOI: 10.1007/s11242-018-1175-2
  57. D. O. Egya, S. Geiger, P.W.M. Corbert, R. March, K. Bisdom, G. Bertotti, and F.H. Bezerra. Analysing the limitations of the dual-porosity response during well tests in naturally fractured reservoirs. Petroleum Geoscience, Vol 25, No 1, February 2019 pp. 30-49. DOI: 10.1144/petgeo2017-053
  58. J. Jiang and S.B. Gorell. Analysis of localization methods in Ensemble Kalman Filter with SVD analytical solution. Journal of Petroleum Science and Engineering. Volume 175, April 2019, Pages 919-931. DOI: 10.1016/j.petrol.2019.01.030
  59. E. Ranaee, F. Inzoli, M. Riva, and A. Guadagnini. Hysteresis effects of three-phase relative permeabilities on black-oil reservoir simulation under WAG injection protocols. Journal of Petroleum Science and Engineering, Vol. 176, pp. 1161-1174, 2019. DOI: 10.1016/j.petrol.2019.01.044
  60. L. Li, H. Jiang, K. Wu, J. Li, and Z. Chen. An analysis of tracer flowback profiles to reduce uncertainty in fracture-network geometries. Journal of Petroleum Science and Engineering Volume 173, February 2019, Pages 246-257. DOI: 10.1016/j.petrol.2018.10.023.
  61. C. Xiao, O. Leeuwenburgh, H. X. Lin, and A. Heemink. Non-intrusive subdomain POD-TPWL for reservoir history matching. Computational Geosciences. Vol. 23, Issue 3, pp. 537-565, 2019. DOI: 10.1007/s10596-018-9803-z
  62. B. Gharedaghloo and J. S.Price. Characterizing the immiscible transport properties of diesel and water in peat soil. Journal of Contaminant Hydrology, Vol. 221, pp. 11-25, 2019. DOI: 10.1016/j.jconhyd.2018.12.005
  63. O. Fuks, F. Ibrahima, P. Tomin, H.A. Tchelepi. Analysis of travel time distributions for uncertainty propagation in channelized porous systems. Transport in Porous Media, Vol. 126, Issue 1, pp. 115-137, 2019. DOI: 10.1007/s11242-018-1052-z
  64. X. Tan, E. Gildin, H. Florez, S. Trehan, Y. Yang, and N. Hoda. Trajectory-based DEIM (TDEIM) model reduction applied to reservoir simulation. Computational Geosciences, Vol. 23, No. 1, pp. 35-53, 2019. DOI: 10.1007/s10596-018-9782-0
  65. F. Hourfar, H.J. Bidgoly, B. Moshiri, K. Salahshoor, and A. Elkamel. A reinforcement learning approach for waterflooding optimization in petroleum reservoirs. Engineering Applications of Artificial Intelligence, Volume 77, January 2019, Pages 98-116. DOI: 10.1016/j.engappai.2018.09.019
2018
  1. E. Ucar, I. Berre, E. Keilegavlen, and J.M. Nordbotten. A finite-volume discretization for deformation of fractured media. Computational Geosciences, Volume 22, Issue 4, pp. 993 -1007, 2018. DOI: 10.1007/s10596-018-9734-8
  2. W. Fang, C. Liu, J. Li, H. Jiang, J. Pu, H. Gu, and X. Qin. A discrete modeling framework for reservoirs with complex fractured media: Theory, validation and case studies. Journal of Petroleum Science and Engineering, Volume 170, November 2018, Pages 945-957. DOI: 10.1016/j.petrol.2017.11.050-
  3. Y. Mehmani and H.A. Tchelepi. Multiscale computation of pore-scale fluid dynamics: single-phase flow. Journal of Computational Physics, Volume 375, pp. 1469-14872018. DOI: 10.1016/j.jcp.2018.08.045
  4. A. D. Obembe, S. A. Abu-Khamsin, M. E. Hossain, K. Mustapha. Analysis of subdiffusion in disordered and fractured media using a Grünwald-Letnikov fractional calculus model. Computational Geosciences, Volume 22, Issue 5, pp. 1231 -1250, 2018. DOI: 10.1007/s10596-018-9749-1
  5. M. Schneider, D. Gläser, B. Flemisch, and R. Helmig. Comparison of finite-volume schemes for diffusion problems. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles, Volume 73, 2018. DOI: 10.2516/ogst/2018064
  6. J. Franc, G. Debenest, L. Jeannin, R. Ababou, and R. Masson. Comparisons of FV-MHMM with other finite volume multiscale methods. Transport in Porous Media, Volume 125, Issue 2, pp. 151 -171, 2018. DOI: 10.1007/s11242-018-1111-5
  7. R. Castaneda Neto, F. Doster, and S. Geiger. Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, Volume 54, Issue 3, pp. 1650-1668, 2018. DOI: 10.1002/2017WR022159
  8. I. Stefansson, I. Berre, and E. Keilegavlen. Finite-volume discretizations for flow in fractured porous media. Transport in Porous Media. Volume 124, Issue 2, pp 439 -462, 2018. DOI: 10.1007/s11242-018-1077-3
  9. S. Trehan and L.J. Durlofsky. Machine-learning-based estimation of upscaling error, with application to uncertainty quantification. Computational Geosciences, Volume 22, Issue 4, pp. 1093 -1113, 2018. DOI: 10.1007/s10596-018-9740-x
  10. E. Ucar, I. Berre, E. Keilegavlen. Three-dimensional numerical modeling of shear stimulation of naturally fractured rock formations. Journal of Geophysical Research: Solid Earth,
    Volume 123, Issue 5, pp. 3891-3908, 2018. DOI: 10.1029/2017JB015241
  11. A. Nissen, E. Keilegavlen, T. H. Sandve, I. Berre, and J. M. Nordbotten. Heterogeneity preserving upscaling for heat transport in fractured geothermal reservoirs. Computational Geosciences, Volume 22, Issue 2, pp 451 -467, April 2018. DOI: 10.1007/s10596-017-9704-6
  12. M. Schneider, B. Flemisch, R. Helmig, K. Terekhov, and H. Tchelepi. Monotone nonlinear finite-volume method for challenging grids. Computational Geosciences, Volume 22, Issue 2, pp. 565 -586, April 2018,. DOI: 10.1007/s10596-017-9710-8
  13. K. Zhang, X. Ma, Y. Lie, H. Wu, C. Cui, X. Zhang, H. Zhang, and J. Yao. Parameter prediction of hydraulic fracture for tight reservoir based on micro-seismic and history matching. Fractals, Volume 26, Number 2, 1840009, 2018. DOI: 10.1142/S0218348X18400091
  14. L. Zhao, H. Jiang, S. Zhang, H. Yang, F. Sun, Y. Qiao, L. Zhao, W. Chen, and J. Li, Modeling vertical well in field-scale discrete fracture-matrix model using a practical pseudo inner-boundary model, Journal of Petroleum Science and Engineering, Volume 166, pp. 510-530, 2018. DOI: 10.1016/j.petrol.2018.02.061.
  15. Akhmed-Zaki, D. Zh, O. N. Turar, and A. R. Rakhymova. Three dimensional visualization of models and physical characteristics of oil and gas reservoir for virtual reality systems. Journal of Mathematics, Mechanics and Computer Science 99.3 (2018): 92-105. <link>
  16. R. March, F. Doster, and S. Geiger. Assessment of CO2 storage potential in naturally fractured reservoirs with dual-porosity models. Water Resources Research, Volume 54, Issue 3, pp. 1650-1668, 2018. DOI: 10.1002/2017WR022159
  17. B. Beykal, F. Boukouvala, C. A. Floudas, N. Sorek, H. Zalavadia, and E. Gildin. Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations. Computers & Chemical Engineering, Volume 114, pp. 99-110, 2018. DOI: 10.1016/j.compchemeng.2018.01.005.
  18. H.Zanbouri and K.Salahshoor. Development of robust surrogate model for economic performance prediction of oil reservoir production under waterflooding process. Journal of Petroleum Science and Engineering. Volume 165, pp. 496-504, 2018. DOI: 10.1016/j.petrol.2018.01.065
  19. A Fumagalli, E Keilegavlen. Dual virtual element method for discrete fractures networks. SIAM Journal of Scientific Computing, Volume 40, Issue 1, pp. B228 -B258, 2018. DOI: 10.1137/16M1098231
  20. S. H. Elahi and B. Jafarpour. Dynamic fracture characterization from tracer-test and flow-rate data with ensemble Kalman filter. SPE Journal, Volume23, Issue 02, pp. 449-466, 2018. DOI: 10.2118/189449-PA
  21. S. A. Abdul Hamid and A. H. Muggeridge. Analytical solution of polymer slug injection with viscous fingering. Computational Geosciences, Volume 22, Issue 3, pp. 711 -723, 2018. DOI: 10.1007/s10596-018-9721-0
  22. H. Rezaee and D. Marcotte. Calibration of categorical simulations by evolutionary gradual deformation method. Computational Geosciences, Volume 22, Issue 2, pp. 587 -605, 2018. DOI: 10.1007/s10596-017-9711-7
  23. F. Hourfar, K. Salahshoor, H. Zanbouri, A. Elkamel, P. Pourafshary, and B. Moshiri. A systematic approach for modeling of waterflooding process in the presence of geological uncertainties in oil reservoirs. Computers & Chemical Engineering, Volume 111, pp. 66-78, 2018. DOI: 10.1016/j.compchemeng.2017.12.012
  24. S. Karimpouli, S. Khoshlesan, E. H. Saenger, and H. H. Koochi. Application of alternative digital rock physics methods in a real case study: a challenge between clean and cemented samples. Geophysical Prospecting, Volume 66, Issue 4, pp. 767-783, 2018. DOI: 10.1111/1365-2478.12611
  25. G.B. Diaz Cortes, C.Vuik, and J.D.Jansen. On POD-based deflation vectors for DPCG applied to porous media problems. Journal of Computational and Applied Mathematics. Volume 330, pp. 193-213, 2018. DOI: 10.1016/j.cam.2017.06.032
  26. H Singh, J Cai. Screening improved recovery methods in tight-oil formations by injecting and producing through fractures. International Journal of Heat and Mass Transfer, Vol. 116, pp. 977-993, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.071
  27. J. Abbasi, M. Ghaedi, and M. Riazi. A new numerical approach for investigation of the effects of dynamic capillary pressure in imbibition process. Journal of Petroleum Science and Engineering, Volume 162, Pages 44-54, March 2018. DOI: 10.1016/j.petrol.2017.12.035
2017
  1. W. Fang, H. Jiang, J. Li, Q. Wang, J. Killough, L. Li, Y. Peng, and H. Yang. A numerical simulation model for multi-scale flow in tight oil reservoirs. Petroleum Exploration and Development. Volume 44, Issue 3, June 2017, Pages 446-453. DOI: 10.1016/S1876-3804(17)30051-4.
  2. A.D. Obembe, M.E. Hossain, K. Mustapha, and S.A. Abu-Khamsin. A modified memory-based mathematical model describing fluid flow in porous media. Computers & Mathematics with Applications, Volume 73, Number 6, pp. 1385-1402, 2017. DOI: 10.1016/j.camwa.2016.11.022
  3. A.D. Obembe, M.E. Hossain, and S.A. Abu-Khamsin. Variable-order derivative time fractional diffusion model for heterogeneous porous media. Journal of Petroleum Science and Engineering 152, 391-405, 2017. DOI: 10.1016/j.petrol.2017.03.015
  4. E. Ucar, I. Berre, and E. Keilegavlen. Post-injection normal closure of fractures as a mechanism for induced seismicity. Geophysical Research Letters, Volume 44, Issue 19, pp. 9598-9606, 2017. DOI: 10.1002/2017GL074282
  5. A. Capolei, L. H. Christiansen, and J. B. Jørgensen. A novel approach for risk minimization in life-cycle oil production optimization. Computer Aided Chemical Engineering. Volume 40, pp. 157-162, 2017. DOI: 10.1016/B978-0-444-63965-3.50028-3
  6. A. S. Grema, D. Baba, U. H. Taura, M. B. Grema, and L. T. Popoola. Optimization and non-linear identification of reservoir water flooding process. Arid Zone Journal of Engineering, Technology and Environment, [S.l.], Volume 13, Number 5, pp. 610-619, 2017.
  7. H. Singh and N. J. Huerta. Detecting subsurface fluid leaks in real-time using injection and production rates. Advances in Water Resources, Volume 110, pp. 147-165, 2017. DOI: 10.1016/j.advwatres.2017.10.012
  8. L Agélas, G Enchéry, B Flemisch, M Schneider. Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. Journal of Computational Physics, Volume 351, pp. 80-107, December 2017. DOI: 10.1016/j.jcp.2017.09.003
  9. E. Insuasty, P. M. J. Van den Hof, S. Weiland, and J.-D. Jansen. Flow-based dissimilarity measures for reservoir models: a spatial-temporal tensor approach. Computational Geosciences, Volume 21, Issue 4, pp 645 -663, 2017. DOI: 10.1007/s10596-017-9641-4
  10. K. Zhang, X. Zhang, L. Zhang, L. Li, H. Sun, Z. Huang, and J Yao. Assisted history matching for the inversion of fractures based on discrete fracture-matrix model with different combinations of inversion parameters. Computational Geosciences, Volume 21, Issue 5 -6, pp 1365 -1383, December 2017. DOI: 10.1007/s10596-017-9690-8
  11. L. Li, H. Jiang, J. Li, K. Wu, F. Meng, and Z. Chen, Modeling tracer flowback in tight oil reservoirs with complex fracture networks, Journal of Petroleum Science and Engineering, Volume 157, pp. 1007-1020, 2017. DOI: 10.1016/j.petrol.2017.08.022.
  12. R. V. Ponce, F.V. Alvarado, and M.S. Carvalho. Water-alternating-macroemulsion reservoir simulation through capillary number-dependent modeling. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Volume 39, Issue 10, pp. 4135 -4145, October 2017. DOI: 10.1007/s40430-017-0885-7
  13. M. M. Siraj, P.M.J Van den Hof, and J.-D. Jansen. Handling geological and economic uncertainties in balancing short-term and long-term objectives in waterflooding optimization. SPE Journal, Vol. 22, No. 4, pp. 1313-1325, 2017. DOI: 10.2118/185954-PA
  14. W. Zhang and M. Al Kobaisi. A two-step finite volume method for the simulation of multiphase fluid flow in heterogeneous and anisotropic reservoirs. Journal of Petroleum Science and Engineering, Volume 156, pp. 282-298, 2017 DOI: 10.1016/j.petrol.2017.06.003
  15. D. Stone, S. Geiger, G. Lord. Asynchronous discrete event schemes for PDEs. Journal of Computational Physics, Volume 342, pp. 161-176, August 2017,. DOI: 10.1016/j.jcp.2017.04.026
  16. L. Zhang, X. Zhang, K. Zhang, H. Zhang, J. Yao. Inversion of fractures with combination of production performance and in-situ stress analysis data. Journal of Natural Gas Science and Engineering, Volume 42, pp. 232-242, 2017. DOI: 10.1016/j.jngse.2017.03.002
  17. E. Ahmed, J. Jaffré, J.E. Roberts, A reduced fracture model for two-phase flow with different rock types, Mathematics and Computers in Simulation, Volume 137, pp. 49-70, 2017. DOI: 10.1016/j.matcom.2016.10.005.
  18. A. Benali, A. Bacetti, A. Belkherroubi, H. Harhad, and S. Fasla-Louhibi, S. Fluid flow simulation through a naturally fractured reservoir with Matlab & Eclipse software. Nature & Technology, Vol. 16, pp. 21-29, 2017.
  19. K.G. Hanssen, A. Codas, and B. Foss. Closed-loop predictions in reservoir management under uncertainty. SPE Journal, Volume 22, Issue 05, pp. 1585-1595, 2017. DOI: 10.2118/185956-PA
  20. A. Singh, N.M. Reddy, and P. Tiwari. Petroleum Reservoir Simulation of Two-Phase Flow. In: Saha A., Das D., Srivastava R., Panigrahi P., Muralidhar K. (eds) Fluid Mechanics and Fluid Power - Contemporary Research. Lecture Notes in Mechanical Engineering. Springer, New Delhi. DOI: 10.1007/978-81-322-2743-4_89
  21. F. Hourfar, B. Moshiri, K. Salahshoor, A. Elkamel, Real-time management of the waterflooding process using proxy reservoir modeling and data fusion theory. Computers & Chemical Engineering, Volume 106, pp. 339-354, 2017, DOI: 10.1016/j.compchemeng.2017.06.018.
  22. G.J. Lord and D. Stone. New efficient substepping methods for exponential timestepping. Applied Mathematics and Computation, Volume 307, pp. 342 -365, August 2017. DOI: 10.1016/j.amc.2017.02.052
  23. W. Zhang, M. Al Kobaisi. A simplified enhanced MPFA formulation for the elliptic equation on general grids. Computational Geosciences. Volume 21, Issue 4, pp 621 -643, 2017. DOI: 10.1007/s10596-017-9638-z
  24. A. A. Shamsuddeen, H. Ismail, and Z. Z. Ibrahim. Well trajectory optimization of homogeneous and heterogeneous reservoirs by the use of adjoint-based optimization technique. International Research Journal of Advanced Engineering and Science, Volume 2, Issue 2, pp. 36-50, 2017.
  25. A. Codas, K.G. Hanssen, B. Foss, A. Capolei, J. B. Jørgensen. Multiple shooting applied to robust reservoir control optimization including output constraints on coherent risk measures. Computational Geosciences, Volume 21, Issue 3, pp 479 -497, June 2017. DOI: 10.1007/s10596-017-9625-4
  26. L. H. Christiansen, A. Capolei, J. B. Jørgensen. A least squares approach for efficient and reliable short-term versus long-term optimization. Computational Geosciences, Volume 21, Issue 3, pp. 411 -426, June 2017. DOI: 10.1007/s10596-017-9620-9.
  27. W. Zhang, M. Al Kobaisi. A globally coupled pressure method for the discretization of the tensor-pressure equation on non-K-orthogonal grids. SPE Journal, Vol. 22, Issue 2, pp. 679 - 698, 2017. DOI: 10.2118/184405-PA.
  28. N. Sorek, E. Gildin, F. Boukouvala, B. Beykal, C. A. Floudas. Dimensionality reduction for production optimization using polynomial approximations. Computational Geosciences. Volume 21, Issue 2, pp. 247 -266, 2017. DOI: 10.1007/s10596-016-9610-3
  29. L. Perozzi, B. Giroux, D.R. Schmitt, and E. Gloaguen. Sensitivity of seismic response for monitoring CO2 storage in a low porosity reservoir of the St Lawrence Lowlands, Québec, Canada: Part 2 - Synthetic modeling. Greenhouse Gases Science and Technology, Volume 7, pp. 613 -623, 2017. DOI: 10.1002/ghg.1670
  30. K. Katterbauer, S. Arango, S. Sun, I. Hoteit. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs. Geophysical Prospecting. Volume 65, No 1, January 2017 pp. 337 - 364. DOI: 10.1111/1365-2478.12371.
  31. S. Le Clainche, F. Varas, J.M. Vega. Accelerating oil reservoir simulations using POD on the fly. International Journal for Numerical Methods in Engineering, Volume 110, Issue 1, pp. 79-100, April 2017. DOI: 10.1002/nme.5356
  32. S.Navabi, R. Khaninezhad, B. Jafarpour. A unified formulation for generalized oilfield development optimization. Computational Geosciences, Volume 21, Issue 1, pp. 47 -74, 2017. DOI: 10.1007/s10596-016-9594-z
2016
  1. L. Zhao, H. Jiang, J. Li, X. Lu, Z. Zhang, J. Li, and Y. Pei. Numerical simulation study of thermal degradation in polymer flooding based on streamlines. Petroleum Geology and Recovery Efficiency, 2016, 23(6):76-81.
  2. L. Perozzi, E. Gloaguen, B. Giroux, K. Holliger. A stochastic inversion workflow for monitoring the distribution of CO2 injected into deep saline aquifers. Computational Geosciences, Volume 20, Issue 6, pp 1287 -1300, December 2016. DOI: 10.1007/s10596-016-9590-3
  3. A. Alyoubi, M. Ganesh. Parallel mixed FEM simulation of a class of single-phase models with non-local operators, Journal of Computational and Applied Mathematics, Volume 307, pp.106-118, December 2016. DOI: 10.1016/j.cam.2016.03.007.
  4. M. Jesmani, M.C. Bellout, R. Hanea, B. Foss. Well placement optimization subject to realistic field development constraints. Computational Geosciences. Volume 20, Issue 6, pp. 1185 -1209, December 2016. DOI: 10.1007/s10596-016-9584-1
  5. K.G. Hanssen, B. Foss. On selection of controlled variables for robust reservoir management. Journal of Petroleum Science and Engineering, Volume 147, pp. 504 -514, 2016. DOI: 10.1016/j.petrol.2016.08.027
  6. H. Yang, C. Yang, and S. Sun. Active-set reduced-space methods with nonlinear elimination for two-phase flow problems in porous media. SIAM Journal on Scientific Computing, Vol. 38, Number 4, pp. B593-B618, 2016. DOI: 10.1137/15M1041882
  7. J. S. Pau, W. Pao, and S.P. Yong. CO2 flow in saline aquifer with salt precipitation. International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 26, Issue 1, pp. 122-145, 2016. DOI: 10.1108/HFF-02-2015-0051
  8. H. Sharma and M. Pandey. Two phase flow in three dimensional multigrid model. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 10, October 2016. DOI: 10.15680/IJIRSET.2016.0510039
  9. A. Codas, B. Foss, E. Camponogara, S. Krogstad, Black-oil minimal fluid state parametrization for constrained reservoir control optimization, Journal of Petroleum Science and Engineering, Volume 143, July 2016, Pages 35-43. DOI: 10.1016/j.petrol.2016.01.034
  10. E. G. D. Barros, P. M. J. Van den Hof, J. D. Jansen. Value of information in closed-loop reservoir management. Computational Geosciences. Volume 20, Issue 3, pp. 737 -749, 2016. DOI: 10.1007/s10596-015-9509-4
  11. M. Hosseini and M. A. Riahi. Sparsity-based compressive reservoir characterization and modeling by applying ILS-DLA sparse approximation with LARS on DisPat-generated MPS models using seismic, well log, and reservoir data. Nonlinear Processes in Geophysics Discuss., 2016. DOI: 10.5194/npg-2016-46.
  12. L. H. Christiansen, A. Capolei, J. Bagterp Jørgensen, Time-explicit methods for joint economical and geological risk mitigation in production optimization. Journal of Petroleum Science and Engineering, Volume 146, October 2016, pp. 158-169. DOI: 10.1016/j.petrol.2016.04.018.
  13. F. Hourfar, B. Moshiri, K. Salahshoor, M. Zaare-Mehrjerdi, and P. Pourafshary. Adaptive modeling of waterflooding process in oil reservoirs. Journal of Petroleum Science and Engineering, Vol. 146, pp. 702-713, 2016. DOI: 10.1016/j.petrol.2016.06.038
  14. F. Lindner, M. Pfitzner, C. Mundt. Multiphase, multicomponent flow in porous media with local thermal non-equilibrium in a multiphase mixture model. Transport in Porous Media, March 2016, Volume 112, Issue 2, pp 313 -332. DOI: 10.1007/s11242-016-0646-6
  15. M. Babaei and I. Pan. Performance comparison of several response surface surrogate models and ensemble methods for water injection optimization under uncertainty, Computers & Geosciences, Vol. 91, pp. 9-32, 2016. DOI: 10.1016/j.cageo.2016.02.022.
  16. M.N. Najafi, M. Ghaedi, and S. Moghimi-Araghi. Water propagation in two-dimensional petroleum reservoirs. Physica A: Statistical Mechanics and its Applications, Vol. 445, pp. 102-111, 2016. DOI: 10.1016/j.physa.2015.10.100
  17. R. March, F. Doster and S. Geiger. Accurate early-time and late-time modeling of countercurrent spontaneous imbibition. Water Resources Research, Vol. 52, Issue 8, pp. 6263 -6276, August 2016. DOI: 10.1002/2015WR018456.
  18. F. Sana, K. Katterbauer, T. Y. Al-Naffouri, and I. Hoteit. Orthogonal matching pursuit for enhanced recovery of sparse geological structures with the Ensemble Kalman filter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Volume 9, Issue 4, pp. 1710-1724, 2016. DOI: 10.1109/JSTARS.2016.2518119
  19. A. S. Grema, Y. Cao. Optimal feedback control of oil reservoir waterflooding processes. International Journal of Automation and Computing, February 2016, Volume 13, Issue 1, pp. 73 -80. DOI: 10.1007/s11633-015-0909-7
  20. A. Alkhatib and M. Babaei. Applying the multilevel Monte Carlo method for heterogeneity-induced uncertainty quantification of surfactant/polymer flooding. SPE Journal, Volume 21, Issue 04, pp. 1192-1203, 2016. DOI: 10.2118/172635-PA
  21. H. Jeong and S. Srinivasan. Fast assessment of CO2 plume characteristics using a connectivity based proxy. International Journal of Greenhouse Gas Control, Volume 49, 387-412, 2016. DOI: 10.1016/j.ijggc.2016.03.001.
  22. F. Sana, F. Ravanelli, T. Y. Al-Naffouri and I. Hoteit. A sparse Bayesian imaging technique for efficient recovery of reservoir channels with time-lapse seismic measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 2242-2254, June 2016. DOI: 10.1109/JSTARS.2016.2563163.
  23. H. Shahandeh, S. Rahim, and Z. Li. Strategic optimization of the oil sands development with SAGD: Drainage area arrangement and development planning. Journal of Petroleum Science and Engineering, Volume 137, 172 -184, 2016. DOI: 10.1016/j.petrol.2015.11.023
2015
  1. J. Zhang, and A. Revil. Cross-well 4-D resistivity tomography localizes the oil -water encroachment front during water flooding. Geophysical Journal International, Volume 201, Issue 1, pp. 343-354, 2015. DOI: 10.1093/gji/ggv028
  2. A. Codas, B. Foss, E. Camponogara. Output-constraint handling and parallelization for oil-reservoir control optimization by means of multiple shooting. SPE Journal, Volume 20, Issue 4, pp. 856-871, 2015. DOI: 10.2118/174094-PA
  3. K. Fossum and T. Mannseth. Assessment of ordered sequential data assimilation. Computational Geosciences, Volume 19, Issue 4, pp. 821-844, 2015. DOI: 10.1007/s10596-015-9492-9
  4. S. Rahim, Z. Li, J. Trivedi. Reservoir geological uncertainty reduction: an optimization-based method using multiple static measures. Mathematical Geosciences, May 2015, Volume 47, Issue 4, pp 373 -396. DOI: 10.1007/s11004-014-9575-5
  5. K. Katterbauer, S. Arango, S. Sun, S., and I. Hoteit. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification. Journal of Petroleum Science and Engineering, Volume 128, 160-176, 2015. DOI: 10.1016/j.petrol.2015.02.016
  6. M.N. Najafi, M. Ghaedi, Geometrical clusters of Darcy's reservoir model and Ising universality class, Physica A: Statistical Mechanics and its Applications, Volume 427, pp. 82-91, 2015. DOI: 10.1016/j.physa.2015.01.061.
  7. A. Hasan and B. Foss. Optimal switching time control of petroleum reservoirs. Journal of Petroleum Science and Engineering, Volume 131, pp. 131-137, 2015. DOI: 10.1016/j.petrol.2015.04.027
  8. J. Li, Z. Lei, G. Qin, B. Gong. Effective local-global upscaling of fractured reservoirs under discrete fractured discretization. Energies, Volume 8, number 9, pp. 10178-10197, 2015. DOI:10.3390/en80910178
  9. M. Babaei , A, Alkhatib, I. Pan. Robust optimization of subsurface flow using polynomial chaos and response surface surrogates. Computational Geosciences, Volume 19, Number 5, pp. 979 -998, 2015. DOI: 10.1007/s10596-015-9516-5
  10. T. Chen, C. Clauser, G. Marquart, K. Willbrand, and D. Mottaghy. A new upscaling method for fractured porous media. Advances in Water Resources, Vol. 80, pp. 60-68, 2015. DOI: 10.1016/j.advwatres.2015.03.009
  11. X. Lu, H. Jiang, J. Li, L. Zhao, Y. Pei, Y. Zhao, G. Liu, and W. Fang. Polymer thermal degradation in high-temperature reservoirs. Petroleum Science and Technology, Volume 33, Issue 17-18, pp. 1571-1579, 2015. DOI: 10.1080/10916466.2015.1072561
  12. K. Katterbauer, I. Hoteit, S. Sun. History matching of electromagnetically heated reservoirs incorporating full-wavefield seismic and electromagnetic imaging. SPE Journal, Volume 20, No 5, pp. 923 - 941, 2015. DOI: 10.2118/173896-PA
  13. F. Lindner, C. Munz, and M. Pfitzner. Fluid flow and heat transfer with phase change and local thermal non-equilibrium in vertical porous channels. Transport in Porous Media, Volume 106, Issue 1, pp 201 -220, 2015. DOI: 10.1007/s11242-014-0396-2.
  14. A. Capolei, E. Suwartadi, B. Foss, J. B. Jørgensen. A mean-variance objective for robust production optimization in uncertain geological scenarios. J. Petroleum Science and Engineering, Volume 125, pp. 23-37 2014, DOI: 10.1016/j.petrol.2014.11.015.
2014
  1. J. D. Jansen, R.M. Fonseca, S. Kahrobaei, M.M. Siraj, G.M. Van Essen, and P.M.J. Van den Hof. The egg model - A geological ensemble for reservoir simulation. Geoscience Data Journal, Volume 1 (2), pp. 192-195, 2014. DOI: 10.1002/gdj3.21
  2. O. Leeuwenburgh and R. Arts. Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter. Computational Geosciences. Volume, 18, Issue: 3-4, pp. 535-548. 2014. DOI: 10.1007/s10596-014-9434-y
  3. K. Fossum and T. Mannseth. Parameter sampling capabilities of sequential and simultaneous data assimilation: II. Statistical analysis of numerical results. Inverse Problems, Volume 30, Number 11, 114002, 2014. DOI: 10.1088/0266-5611/30/11/114003
  4. T. D. Humphries, R. D. Haynes, and L. A. James. Simultaneous and sequential approaches to joint optimization of well placement and control. Computational Geosciences, Volume 18, Issue 3-4, pp 433-448, 2014. DOI: 10.1007/s10596-013-9375-x
  5. J. Rezaie and J. Eidsvik. Kalman Filter variants in the closed skew normal setting. Computational Statistics & Data Analysis, Volume 75, pp. 1 -14, 2014. DOI: 10.1016/j.csda.2014.01.014
  6. J. Rezaie, J. Eidsvig, and T. Mukerji. Value of information analysis and Bayesian inversion for closed skew-normal distributions: Applications to seismic amplitude variation with offset data. Geophysics, Volume 79, Issue 4, pp. R151-R163, 2014. DOI: 10.1190/geo2013-0048.1
  7. K. Katterbauer, I. Hoteit, and S. Sun. EMSE: Synergizing EM and seismic data attributes for enhanced forecasts of reservoirs. J. Petrol. Sci. Eng., 2014, DOI: 10.1016/j.petrol.2014.07.039.
  8. C. Lieberman and K. Willcox. Nonlinear goal-oriented Bayesian inference: Application to carbon capture and storage. SIAM Journal on Scientific Computing 36, no. 3, B427 -B449, 2014. DOI: 10.1137/130928315.
  9. A. Butler, R.D. Haynes, T.D. Humphries, and P. Ranjan. Efficient optimization of the likelihood function in Gaussian process modelling, Computational Statistics & Data Analysis, Volume 73, May 2014, Pages 40-52, ISSN 0167-9473, Doi: 10.1016/j.csda.2013.11.017.
  10. T. H. Sandve, E. Keilegavlen and J. M. Nordbotten. Physics-based preconditioners for flow in fractured porous media. Water Resources Research, Volume 50, Issue 2, pages 1357 -1373, February 2014. DOI: 10.1002/2012WR013034
2013
  1. Y. Efendiev, O. Iliev, and C. Kronsbein. Multilevel Monte Carlo methods using ensemble level mixed MsFEM for two-phase flow and transport simulations. Computational Geosciences, Volume 17, Issue 5, pp 833-850, 2013. DOI: 10.1007/s10596-013-9358-y
  2. A. Rotevatn, T. H. Sandve, E. Keilegavlen, D. Kolyukhin and H. Fossen. Deformation bands and their impact on fluid flow in sandstone reservoirs: the role of natural thickness variations. Geofluids, Volume 13, Issue 3, pages 359 -371, 2013. DOI: 10.1111/gfl.12030
  3. A. Capolei, E. Suwartadi, B. Foss, J. B. Jørgensen. Waterflooding optimization in uncertain geological scenarios. Computational Geosciences, Volume 17, Issue 6, pp 991-1013, 2013. DOI: 10.1007/s10596-013-9371-1
  4. A. Tambue. Efficient numerical simulation of incompressible two-phase flow in heterogeneous porous media based on exponential Rosenbrock−Euler method and lower-order Rosenbrock-type method. Journal of Porous Media, Volume 16, Issue 5, pp. 381-393, 2013. DOI: 10.1615/JPorMedia.v16.i5.10
  5. A. Tambue, I. Berre, J.M. Nordbotten. Efficient simulation of geothermal processes in heterogeneous porous media based on the exponential Rosenbrock-Euler and Rosenbrock-type methods. Advances in Water Resources, Volume 53, pp. 250 -262, 2013. DOI: 10.1016/j.advwatres.2012.12.004
2012
  1. Lijian Jiang, J. David Moulton, Daniil Svyatskiy, Analysis of stochastic mimetic finite difference methods and their applications in single-phase stochastic flows, Computer Methods in Applied Mechanics and Engineering, Volumes 217 -220, 1 April 2012, Pages 58-76, ISSN 0045-7825, doi: 10.1016/j.cma.2011.12.007.
  2. J. Rezaie and J. Eidsvig. Shrinked (1 − α) ensemble Kalman filter and α Gaussian mixture filter. Comput. Geosci., Vol. 16, No.3, pp. 837-852, 2012. DOI: 10.1007/s10596-012-9291-5.
  3. T. H. Sandve, I. Berre, J. M. Nordbotten. An efficient multi-point flux approximation method for Discrete Fracture-Matrix simulations. J. Comp. Phys., Vol. 231, Issue 9, pp. 3784 -3800, 2012. DOI: 10.1016/j.jcp.2012.01.023
  4. E. Keilegavlen, J. M. Nordbotten, A. F. Stephansen. Tensor relative permeabilities: origins, modeling and numerical discretization. Int. J Numer. Anal. Mod. (Special issue in memory of Magne Espedal), Vol. 9, No. 3, pp. 701-724, 2012.
  5. E. Suwartadi, S. Krogstad, and B. Foss. Nonlinear output constraints handling for production optimization of oil reservoirs. Comput. Geosci., Vol. No. 2, pp. 499-517, 2012. DOI: 10.1007/s10596-011-9253-3.
2011
  1. E. W. Bhark, B. Jafarpour, and A. Datta-Gupta. A generalized grid connectivity -based parameterization for subsurface flow model calibration, Water Resour. Res., 47, W06517, 2011. DOI: 10.1029/2010WR009982.

Have you used MRST in any of your papers? If you provide us with publication details, we are happy to include your publication on this page or present a short overview on our gallery pages. Contact:

Published February 18, 2017

Publications with MRST

The MRST textbooks

By SINTEF:
By others:
Theses: