mgval_0.30
Here you find instance definitions and the best known upper and lower bounds (to our knowledge) for the 34 instances of the mgval (ß=0.30) benchmark derived from the CARP by Bosco et al. [BLMV]. The values for the upper and lower bounds reported in the table only include traversal costs, i.e. service costs are omitted.
Instance definitions (text)The mgval_0.30 instance definitions can be found, as a zip-file here.
Best known results for the mgval_0.30 benchmarkFor the Upper Bound values in blue, you get the detailed solution by clicking on the value.
References BILV - C. Bode, S. Irnich, D. Laganà, F. Vocaturo. Two-Phase Branch-and-Cut for the Mixed Capacitated General Routing Problem. Technical Report LM-2014-02, University of Mainz. BLMV - A. Bosco, D. Lagana, R. Musmanno, and F. Vocaturo. Modeling and solving the mixed capacitated general routing problem. Optimization Letters (2012), pp 1-19, doi 10.1007/s11590-012-0552-y. G - K. A. Gaze, G. Hasle, C. Mannino. Column Generation for the Mixed Capacitated General Routing Problem. Talk at WARP 1 - First Workshop on Arc Routing Problems, Copenhagen May 22-24 2013. |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||