Innerst i Sognefjorden, ved foten av de bratte Skagastølstindane, skjer et industri-løft basert på satsingsvilje, industriell dyktighet, vannkraft og forskning.
– Årdal har alltid vært i forkant av den industrielle og teknologiske utviklingen, sier John Atle Bones, SINTEF-forsker, kybernetiker og solcelle-entusiast. Bygda er derfor kjent for både vannkraft og aluminiumsproduksjon.
Det er ikke like kjent at industrien i Årdal er i verdenstoppen når det gjelder å produsere monokrystallinsk silisium. Et supermateriale som brukes i praktisk talt all elektronikk, men som i dag også er den viktigste ingrediensen i høyeffektive solceller.
– Markedet er i enorm vekst, og utviklingen i bransjen skjer raskt. For å være ledende og holde seg i front satses det mye på kontinuerlig forbedring, forskning og innovasjon, sier Bones.
Nå leder han et av prosjektene som skal bidra til at NorSun i Årdal skal få verdens høyeste produktivitet. Om ryktet holder det det lover, har råvaren fra NorSun på Årdalstangen vakt Tesla-gründer Elon Musks interesse – i arbeidet med produktet sun-roof, solkraftverket Musk håper skal bli «allemannseie».
Mer miljøvennlig produksjon av monokrystallinsk silisium, skal den verdenskjente gründeren lete lenge etter: De bratte fjellene her leverer fornybar og utømmelig vannkraft til fabrikken i Årdal. Kraften brukes til å drifte de spesielle ovnene som kalles krystalltrekkere.
– Det er inne i ovnene, som holder en temperatur på over 1400 grader celsius, det spesielle krystallet dannes, sier forskeren.
Komplisert å lage solceller
Produksjonen av monokrystallinsk silisium er en fascinerende skapelsesprosess: Den forvandler en frøkrystall på størrelse med en blyant til en stor monokrystall av silisium på over to meter, en såkalt ingot.
Dette skjer ved hjelp av en for de fleste ukjent fremstillingsmetode som kalles Czochralski-prosessen (se faktaboks), og som foregår inne i smelteovnene over flere døgn. Her trekkes krystall-frøet sakte oppover av en metalltråd, mens det roterer i en digel av smeltet silisium. På denne måten vokser krystallet – omtrent en millimeter i timen, og blir til én eneste stor krystall – en monokrystall.
Om Czochralski-prosessen:
Selv om det ikke er allment kjent, så har Czochralski-prosessen (Cz) vært, og er fortsatt, en av de viktigste industrielle prosessene i verden. Praktisk talt alt silisium som brukes i mikroelektronikk (PCer, mobiltelefoner, sensorer, osv) er produsert med denne prosessen. I dag brukes den også til å produsere de mest effektive kommersielle solcellene. Det hele startet for 100 år siden, da den polske vitenskapsmannen Jan Czochralski studerte vekstrater for ulike materialer. Les mer om ham på Wikipedia.
Materialet beskrives ofte som det mest perfekte mennesket har skapt, fordi atomene står på rekke og rad i hele den store krystallen – nesten helt uten avvik. Det er også denne strukturen som gjør at det har evne til å omdanne sollyset til strøm veldig effektivt. Det finnes ingen grenser hvor to krystaller med forskjellig orientering møtes, og heller ingen små forskyvninger i krystallen som gir uperfekte linjer i materialet, såkalte dislokasjoner, som hindrer elektronenes flyt i solcellen.
– Prosessen er uhyre kompleks fordi den består av så mange ulike komponenter: Nøyaktig styring av temperaturer, trykk, gass, ovnenes alder og tilstand, silisiumets kvalitet, egenskapene til smeltedigelen og hvordan de ulike delprosessene styres. For å nevne noe, forklarer forsker John Atle Bones. Vi sier at dette er et sterkt koblet system – om man endrer på én parameter, så påvirker det som regel mange andre.
Og det er nettopp kompleksiteten i prosessen som gjør det så lønnsomt å bruke mer avanserte sensorer og digitale verktøy for å styre den: Jo mer nøyaktig styring, jo bedre.
SINTEF har i mange år studert hver enkelt delprosess i materialets vei fra frøkrystall til ferdig silisiumblokk – og videre til såkalte wafers – silisiumskivene som igjen blir til solceller.
I prosjektet, som har fått navnet ASICO (Advanced Single crystal growth control for high-end photovoltaics, se faktaboks), utvikles ny kunnskap og teknologi som skal bidra til å trekke krystaller raskere, og med enda bedre kvalitet. En viktig del av dette er å studere og forstå hvordan ulike parametere påvirker resultatet. En del av prosjektet går på å utvikle algoritmer som beskriver dette matematisk. Når det er gjort kan tallene bli til dataprogram, som igjen kan gi ovnene en hjerne og evne til å lære.
– Målet er å maksimere prosessytelsen, uten kvalitetsavvik. Systemet er bygd og tatt i bruk, og uttesting er i gang. Vi ser gode resultater og ikke minst videre potensiale, sier SINTEF- forskeren.
Hver ovn er individuell
Et viktig grep forskerne har foreslått er å utstyre ovnene med maskinlæring, slik at de blir selvlærende. Målet er at hver ovn kan justere seg selv til å kunne ta ut sitt fulle potensiale.
– Men er ikke ovnene helt like?
– Nei. I prinsippet er alle ovnene like, men i realiteten er det forskjeller: Ovnene har for eksempel varmesoner som består av ulike typer grafitt. Det er varmesonen som gir de termiske betingelsene for å gro krystallene. Men grafitten varer ikke for alltid, den må med jevne mellomrom byttes ut fordi den blir slitt. Det gjør at hver ovn får sitt «termiske fingeravtrykk», som igjen påvirker produksjonen. Disse forskjellene må kompenseres med oppskriften man styrer ovnen etter, forklarer Bones.
Med andre ord er dette et tidkrevende og kontinuerlig arbeid som krever at man henter ut driftsdata, og at man analyser alle styringsparameterne – eller forholdene inne i ovnen – til enhver tid, for alle ovnene. Snart skal dette skje automatisk:
– For å forklare hva ovnene nå skal gjøre, kan vi sammenlikne med en bil som skal kjøre uten fører på en svingete og glatt vei: Oppgave en er å holde den innstilte farten med god nøyaktighet, mens den kontinuerlig finner den maksimale hastigheten som cruise controllen kan settes til, uten at bilen sklir ut i svingene, sier John Atle Bones.
– Ganske enkelt kan vi skyve hver enkelt ovns ytelse over på det maksimale. Det tror vi vil gi oss stor gevinst, både i produksjonstakt og kvalitet, utdyper prosessingeniør i NorSun, Jeroen J. van Delft.
Samtidig jobbes det med andre aspekter av prosessen, f.eks. hvordan man mer effektivt kan kjøle krystallen mens den vokser.
– Vi gjorde noen vellykkede forsøk knyttet til dette for kort tid siden, og her vil det skapes en del ny teknologi fremover. Til slutt så gir alt dette billigere og bedre solceller for meg og deg, og en mer bærekraftig jordklode å leve på, sier Delft.
Solceller vokser – og vokser
Solcellestrøm er den raskest voksende energiformen i verden, og bidrar stadig mer til fornybar energi i mange land. Mye av grunnen til det er at markedet etterspør rimelig og fornybar energi, samtidig som solceller i høyt tempo utkonkurrerer andre kraftkilder i større og større deler av verden. Investeringskostnadene for solstrøm har falt kraftig og virkningsgraden av solcellene økt. Som en følge av dette jobber flere aktører med å lage såkalte bygningsintegrerte solceller: solceller som er innebygget i enten materialer for tak, fasader, eller i vinduer.
Fakta om prosjektet:
Navn: ASICO (Advanced Single crystal growth control for high-end photovoltaics)
Prosjekteier: NorSun
Partnere: SINTEF, NTNU, TUD
Varighet: 2016-2019
Vil du vite mer om utviklingen innenfor solstrøm, kan du lese rapporten Solcellesystemer og sol i systemet, som er utarbeidet av Multiconsult og Asplan Viak på oppdrag fra Solenergiklyngen.
Ved Norwegian Crystals, som produserer monokrystallinsk silisium til Solceller i Norge, skal det også ekspanderes kraftig.