To main content

Biokinetics of nanomaterials: The role of biopersistence

Abstract

Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and
quantification of NMs, especially determination of their state, i.e., dissolution, aggregation,and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToFSIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.
Read publication

Category

Academic article

Client

  • EU / 310584
  • Research Council of Norway (RCN) / 239199

Language

English

Author(s)

  • Peter Laux
  • Christian Riebeling
  • Andy Booth
  • Joseph D. Brain
  • Josephine Brunner
  • Cristina Cerrillo
  • Otto Creutzenberg
  • Irina Estrela-Lopis
  • Thomas Gebel
  • Gunnar Johanson
  • Harald Jungnickel
  • Heiko Kock
  • Jutta Tentschert
  • Ahmed Tlili
  • Andreas Schäffer
  • Adriënne J.A.M. Sips
  • Robert A. Yokel
  • Andreas Luch

Affiliation

  • Federal Institute for Risk Assessment
  • SINTEF Ocean / Climate and Environment
  • Harvard School of Public Health
  • Spain
  • Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
  • University of Leipzig
  • Federal Institute for Occupational Safety and Health (BAuA)
  • Karolinska Institutet
  • Eawag - Swiss Federal Institute of Aquatic Science and Technology
  • Aachen University of Technology
  • National Institute for Public Health and the Environment
  • University of Kentucky

Year

2017

Published in

NanoImpact

ISSN

2452-0748

Publisher

Elsevier

Volume

6

Page(s)

69 - 80

View this publication at Cristin