To main content

Eulerian and Lagrangian approaches to multidimensional condensation and collection

Abstract

Turbulence is argued to play a crucial role in cloud droplet growth. The combined problem of turbulence and cloud droplet growth is numerically challenging. Here an Eulerian scheme based on the Smoluchowski equation is compared with two Lagrangian superparticle (or superdroplet) schemes in the presence of condensation and collection. The growth processes are studied either separately or in combination using either two-dimensional turbulence, a steady flow or just gravitational acceleration without gas flow. Good agreement between the different schemes for the time evolution of the size spectra is observed in the presence of gravity or turbulence. The Lagrangian superparticle schemes are found to be superior over the Eulerian one in terms of computational performance. However, it is shown that the use of interpolation schemes such as the cloud-in-cell algorithm is detrimental in connection with superparticle or superdroplet approaches. Furthermore, the use of symmetric over asymmetric collection schemes is shown to reduce the amount of scatter in the results. For the Eulerian scheme, gravitational collection is rather sensitive to the mass bin resolution, but not so in the case with turbulence. © 2017. The Authors.
Read publication

Category

Academic article

Client

  • Research Council of Norway (RCN) / 231444
  • Sigma2 / NN9405K

Language

English

Author(s)

Affiliation

  • Sweden
  • Stockholm University
  • Nordic Institute for Theoretical Physics
  • University of Colorado at Boulder
  • Norwegian University of Science and Technology
  • SINTEF Energy Research / Termisk energi

Year

2017

Published in

Journal of Advances in Modeling Earth Systems

ISSN

1942-2466

Publisher

John Wiley & Sons

Volume

9

Issue

2

Page(s)

1116 - 1137

View this publication at Cristin