To main content

Probabilistic modelling of building stock properties for urban mining

Abstract

The construction industry is one of the biggest contributors to greenhouse gas emissions and unsustainable waste. A circular economy of the existing building stock can contribute to minimising mining of finite resources and reducing the construction industry’s waste. However, stakeholders often list lack of information about the existing building stock as a barrier against implementing a circular economy in the construction industry. This study provides a framework for construction industry stakeholders to combine publicly available data sources to obtain probability-based information about the building stock. The study analyses existing building data at city level using Bayesian Networks, a probabilistic modelling approach that accounts for the missing data consistently in contrast to other methods. The framework can be extended to incorporate first principle, data-based and empirical models from disciplines such as structural engineering, architecture, and industrial ecology to facilitate a circular economy.
Read publication

Category

Academic chapter/article/Conference paper

Language

English

Author(s)

Affiliation

  • Norwegian University of Science and Technology

Year

2024

Publisher

International Association for Bridge and Structural Engineering

Book

Construction’s Role for a World in Emergency

ISBN

978-3-85748-204-5

Page(s)

1424 - 1432

View this publication at Cristin