Abstract
Fuel consumption and emissions on a shipping route are typically a cubic function of speed. Given a shipping route consisting of a sequence of ports with a time window for the start of service, substantial savings can be achieved by optimizing the speed of each leg. This problem is cast as a non-linear continuous program, which can be solved by a non-linear programming solver. We propose an alternative solution methodology, in which the arrival times are discretized and the problem is solved as a shortest path problem on a directed acyclic graph. Extensive computational results confirm the superiority of the shortest path approach and the potential for fuel savings on shipping routes.